
Iterative Improvement
Simulated Annealing

Slides based on lecture by Van Larhoven

2 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Iterative Improvement

3 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Iterative ImprovementIterative Improvement

■ General method to combinatorial

optimization problems

Principle:

■ Start with initial configuration

■ Evaluate Gradient of some cost function (or fitness function)

■ Go to direction of Gradient

■ Stop if quality is sufficiently high, if no improvement can be
found or after some fixed time

cost function
"landscape"

cost function
"landscape"

4 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Iterative Improvement - without GradientIterative Improvement - without Gradient

■ General method to solve combinatorial

optimization problems

Principle:

■ Start with initial configuration

■ Randomly or systematically search neighborhood and

select a most promising neighbor as candidate

■ Evaluate some cost function (or fitness function) and accept candidate if "better";

if not, select another neighbor

■ Stop if quality is sufficiently high, if no improvement can be found or after some

fixed time

5 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Iterative Improvement Prerequisites

Needed are:

■ A method to generate initial configuration

■ A transition or generation function to find a neighbor as next candidate

■ A cost function

■ An Evaluation Criterion

■ A Stop Criterion

6 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Iterative Improvement Pros- and Cons

Simple Iterative Improvement or Hill Climbing:

■ Candidate is always and only accepted if cost is lower (or fitness is higher) than

current configuration

■ Stop when no neighbor with lower cost (higher fitness) can be found

Disadvantages:

■ Local optimum as best result

■ Local optimum depends on

initial configuration

■ Generally no upper bound on

iteration length

7 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

How to cope with disadvantages

■ Repeat algorithm many times with different initial configurations

■ Use information gathered in previous runs

■ Use a more complex Generation Function to jump out of local optimum

■ Use a more complex Evaluation Function:
■ Do sometimes accept candidates with higher cost to escape from local optimum
■ Adapt the parameters of this Evaluation Function during execution
■ Based upon the analogy with the simulation of the annealing of solids

8 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Simulated Annealing

9 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Simulated AnnealingSimulated Annealing

Use a more complex Evaluation Function:

■ Do sometimes accept candidates with higher cost to escape from local optimum

■ Adapt the parameters of this Evaluation Function during execution

■ Based upon the analogy with the simulation of the annealing of solids

■ Other Names
■ Monte Carlo Annealing
■ Statistical Cooling
■ Probabilistic Hill Climbing
■ Stochastic Relaxation
■ Probabilistic Exchange Algorithm

10 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Analogy

■ Slowly cool down a heated solid, so that all particles arrange in the ground

energy state -> e.g. crystal

■ At each temperature wait until the solid reaches its thermal equilibrium

■ Probability of being in a state with energy E :

P (E = Ei) = exp (-E / kB * T*ZT0)

E Energy/Cost

T Temperature

kB Boltzmann constant

ZT0 Normalization factor (ev. temperature dependant)

Diamant Graphite

11 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Simulation of cooling (Metropolis 1953)

■ At temperature T :

■ Perturb (randomly) the current state to a new state

■ ∆E is the difference in energy between current and new state

■ If ∆E < 0 (new state is lower), accept new state as current state

■ If ∆E > 0 , accept new state with probability

P (accept) = exp (- ∆E / kB*ZT0 / T)

■ Eventually the systems evolves into thermal equilibrium at temperature T ; then
the formula mentioned before holds

■ When equilibrium is reached, temperature T can be lowered and the process can

be repeated

12 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Simulated Annealing

■ Same algorithm can be used for combinatorial optimization problems:

■ Energy E corresponds to the Cost function C

■ Temperature T corresponds to control parameter t

P(config = configi) = exp (- ∆C(i)*Kc0 / c)

C Cost

c Temperature of Control parameter (slowly decreasing -> 0)

Kc0 Normalization factor

chose so that there is a 50% initial chance

13 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Algorithm

initialize;

count = 0;

bolzCount = 0;

acceptCount = 0;

LOOP

 count++;

 perturb (config.i → config.j, ∆Cij);
 IF ∆Cij < 0 THEN accept
 ELSE IF ∆Cij > 0 AND exp(-∆Cij/c) > random[0,1] THEN

accept; bolzCount++;

 IF accept THEN update(config.j); acceptCount++;

 measureProgress

 next_lower (c)

END

change configuration
randomly

change configuration
randomly change in costchange in cost

14 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Algorithm Termination/Acceptance

■ For termination condition measure progress

■ e.g. count accepted transitions in 1000 iterations

measureProgress:

IF count % 1000 == 0 THEN

 IF acceptCount == 0 BREAK

 ELSE bolzCount = 0; acceptCount = 0;

 END

15 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Parameters

■ Choose the start value of c so that in the beginning nearly all perturbations are

accepted (exploration), but not too big to avoid long run times

■ The function next_lower in the homogeneous variant is generally a simple
function to decrease c, e.g. a fixed part (80%) of current c

■ At the end c is so small that only a very small number of the perturbations is

accepted (exploitation)

■ If possible, always try to remember explicitly the best solution found so far; the

algorithm itself can leave its best solution and not find it again

16 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

Performance

■ SA is a general solution method that is easily applicable to a large number of

problems

■ "Tuning" of the parameters (initial c, decrement of c, stop criterion) is relatively
easy

■ Generally the quality of the results of SA is good, although it can take a lot of

time

■ Results are generally not reproducible: another run can give a different result

■ SA can leave an optimal solution and not find it again

(so try to remember the best solution found so far)

■ Proven to find the optimum under certain conditions; one of these conditions is

that you must run forever

17 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

All the other
Algorithms

18 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

All the other Algorithms

■ There are Thousands of other interesting algorithms:

https://en.wikipedia.org/wiki/Category:Algorithms

■ This was only an introduction

19 von 19School of Engineering © Van Larhoven, K. Rege, ZHAW

