
Lab 1: Creating a Windows Store App1

Windows Store App Development

Lab 1: Creating a Windows Store App

Version 1.6.0

Conditions and Terms of Use

Microsoft Confidential - For Internal Use Only

This training package is proprietary and confidential, and is intended only for uses described in the training
materials. Content and software is provided to you under a Non-Disclosure Agreement and cannot be
distributed. Copying or disclosing all or any portion of the content and/or software included in such packages is
strictly prohibited.

The contents of this package are for informational and training purposes only and are provided "as is" without
warranty of any kind, whether express or implied, including but not limited to the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement.

Training package content, including URLs and other Internet Web site references, is subject to change without
notice. Because Microsoft must respond to changing market conditions, the content should not be interpreted to
be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information
presented after the date of publication. Unless otherwise noted, the companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no
association with any real company, organization, product, domain name, e-mail address, logo, person, place, or
event is intended or should be inferred.

© 2012Microsoft Corporation. All rights reserved.

Copyright and Trademarks

© 2012Microsoft Corporation. All rights reserved.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for
any purpose, without the express written permission of Microsoft Corporation.

For more information, see Use of Microsoft Copyrighted Content at
http://www.microsoft.com/about/legal/permissions/

Microsoft®, Internet Explorer®, and Windows® are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other Microsoft products mentioned herein may be
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
All other trademarks are property of their respective owners.

2Lab 1: Creating a Windows Store App

Contents
LAB 1: CREATING A WINDOWS STORE APP ... 2

EXERCISE 1: CREATING A WINDOWS STORE APP..4

EXERCISE 2: LOADINGRECIPE DATA...12

EXERCISE 3: CUSTOMIZE THE UI ...14

Lab 1: Creating a Windows Store App

Introduction
Contoso Cookbook is a series of hands-on labs designed to immerse you in Windows
Store app development. As you work though the labs, you will create a beautiful,
functional, real-world app that makes use of some of the key new features available in
Microsoft Windows. By the end of the series, you will know how to build an app that
incorporates many of the key characteristics of a great app for the Windows Store,
including:

• A user experience that employs the signature Windows controls such as:

o GridView

o ListView

o AppBar

o SemanticZoom

• A user experience that scales across large and small displays and provides proper
handling of different orientations and window sizes.

• Integration with Windows charms through the Settings and Share contracts.

• Handling of lifecycle and app-model events to properly save and restore state and to
roam settings so that users can seamlessly move among tasks and even devices.

• Seamless integration with modern hardware to implement features such as photo and
video capture.

• Secondary tile pinning, notifications, and badges to keep your app’s content alive and
ever present to users.

• Integration with the Windows Store APIs for trial and in-app purchasing.

In this first lab in the series, you will use Extensible Application Markup Language
(XAML) and C# to create the app, implement navigation, download the data from

Lab 1: Creating a Windows Store App3

Windows Azure (or load it locally if you do not have an Internet connection), and
connect the data to controls using data binding.

Objectives
This lab will show you how to:

• Create a new Windows Store app using Microsoft Visual Studio 2013 templates.

• Understand the structure of the project.

• Brand the app by supplying custom imagery for tiles and other elements.

• Use the HttpClient class to retrieve recipe data from Windows Azure.

• Consume that data and data-bind to a GridView control.

• Use data templates to customize the way data is presented by a ListView control.

• Modify the code and markup generated by Visual Studio to customize your app’s
user interface (UI).

System requirements
You must have the following to complete this lab:

• Microsoft Windows 8.1

• Microsoft Visual Studio 2013

Setup
You must perform the following steps to prepare your computer for this lab:

• Install Microsoft Windows 8.1

• Install Microsoft Visual Studio 2013

Exercises
This Hands-on lab includes the following exercises:

1. Creating a Windows Store app

2. Loading recipe data

3. Customizing the UI

Estimated time to complete this lab: 30 to 45 minutes.

4Lab 1: Creating a Windows Store App

Exercise 1: Creating a Windows Store App
In the first exercise, you will create a new solution in Visual Studio containing a C# Grid
App project. Then you will examine the files that Visual Studio generated and make
some simple modifications to customize the app’s UI.

Task 1 – Create the project
The first step is to create a new project to contain the code and resources that will make
up the Contoso Cookbook app, and to see what Visual Studio includes in that project.

1. Start Visual Studio and use the File > New Project command to create a new Visual
C# project named “ContosoCookbook”. Select Windows Store from the list of
Visual C# templates, and select Grid App (XAML) from the list of template types,
as shown in Figure 1.

Figure 1: Creating the ContosoCookbook Project

2. Select Start Debugging from the Debug menu (or press F5) to start the app in the
debugger. You will see the screen shown in Figure 2. This is the app’s home page or
Start page.

Lab 1: Creating a Windows Store App5

Figure 2: The Contoso Cookbook Start Page

3. Take a few moments to play with the app. For starters, use the mouse (or a finger if
your computer has a touch screen) to scroll the screen horizontally.

Note: The grid layout and the horizontal scrolling are provided by a GridView
control, which is one of many controls provided in the Windows.UI.Xaml.Controls
namespace of the Windows Runtime for building rich, compelling UIs.

4. Find out what happens if you touch or click one of the GridView items. For example,
tap the item labeled Item Title: 1 to display the screen shown in Figure 3. This is the
item-detail page.

Note: Windows is described as a “touch-first” operating system, but it also has great
support for traditional input devices such as mice and styluses. From this point
forward, when instructed to “touch” or “tap“ something on the screen, realize that
you do not have to have a touch screen to do it. A simple mouse click will do.

6Lab 1: Creating a Windows Store App

Figure 3: The Item-Detail Page

Note: When you are on the item-detail page, you can scroll horizontally to view all
the items in the group. (If you are using a mouse, click the arrows that appear on the
left and right edges of the screen.) That scrolling is provided by a FlipView control,
which is another of the controls featured in the Windows.UI.Xaml.Controls
namespace.[MVDB1]

5. Go back to the app’s Start page by tapping the back button (the circled arrow) in the
upper-left corner of the screen.

6. Tap Group Title: 1> under ContosoCookbook in the upper-left corner of the start
page to display the group-detail page (Figure 4).

Lab 1: Creating a Windows Store App7

Figure 4: The Group-Detail Page

7. Switch back to Visual Studio. (If you are using a touch screen, the easy way to do it
is to swipe from left to right starting at the left edge of the screen. If you prefer using
the keyboard, press Windows logo key+D.) Then select Stop Debugging from the
Debug menu to stop the app.

Task 2 – Familiarize Yourself with the Project
It is clear that when Visual Studio generated the project, it gave you a lot for free.
Specifically, it gave you several XAML pages, logic and UI for navigating among pages
(including working back buttons), and sample data resources. To implement Contoso
Cookbook, we will build on what Visual Studio generated. First, take a moment to
familiarize yourself with the project structure and with the assets that Visual Studio
created.

1. In the Solution Explorer window, check out the contents of the project’s root folder.
You will find four key files there, plus code-behind files to go with them:

• App.xaml, which represents the app and its resources

• GroupedItemsPage.xaml, which represents the app’s start page

• ItemDetailPage.xaml, which represents the item-detail page

• GroupDetailPage.xaml, which represents the group-detail page

2. Look in the project’s Assets folder, where you will find the image assets used to
brand the app.

3. Look in the project’s Common folder. Among the files, you will find there are
NavigationHelper.cs, which contains a class that implements code to navigate back
and forward between pages, and a file named suspensionManager.cs, which

8Lab 1: Creating a Windows Store App

contains a class that handles Process Lifetime Management when the app is
suspended.

4. Look in the project’s DataModel folder, where you will find a file named
SampleDataSource.cs containing data classes as well as sample data in
SampleData.json.

Task 3 – Customize the Start Page
Currently, the project name appears at the top of the start page as “ContosoCookbook”.
Let us modify that to read “Contoso Cookbook.”

1. Open App.xaml in Visual Studio.

2. Find the string resource named AppName and change its value from
“ContosoCookbook” to “Contoso Cookbook,” as shown here.

XAML

<x:String x:Key="AppName">Contoso Cookbook</x:String>

3. Press F5 to start the app in the debugger and confirm that the title text at the top of
the start page has changed (Figure 5).

Figure 5: The modified Start Page

4. Return to Visual Studio and use the Stop Debugging command to close the app.

Task 4 – Customize the Branding
In this task, you will replace the tile logo that Visual Studio generated with one that is
more suitable for a cookbook app. While you are at it, you will replace the other PNG
files in the Assets folder to uniquely brand the app, and finish up by modifying the app
manifest.

Lab 1: Creating a Windows Store App9

1. Go to the Windows Start screen and navigate to the installed apps by either flicking
your finger up or by clicking the arrow that appears at the left bottom of the screen
when you move your mouse as in figure 6.

Figure 6

2. In the installed apps screen, right-click the ContosoCookbook tile and click Pin To
Start from the Appbar. If you now go out to the Windows Start screen, you will see
that there is a “ContosoCookbook” tile. That tile is the app’s primary tile. It was
created when the app was installed, which happened the first time the app was started
from Visual Studio. The image on the tile comes from Logo.png in the Assets folder.

3. On the Windows Start screen, right-click the ContosoCookbook tile (or use a finger
to drag it down a half-inch or so before letting go) and select Uninstall to uninstall
the app and remove the tile.

4. Go back to Visual Studio and right-click the Assets folder. Then use the Add >
Existing Item command to import Logo.scale-100.png, SmallLogo.scale-100.png,
SplashScreen.scale-100.png, StoreLogo.scale-100.png, and WideLogo.scale-100.png
from the Images folder of the lab starting materials. When prompted, allow Visual
Studio to write these files over the existing files with the same names.

5. In Solution Explorer, double-click Package.appxmanifest to open the app manifest.

Note: The app manifestcontains the metadata for an app and is embedded in every
app that you build. At runtime, the manifest tells Windows everything it needs to
know about the app, including the app name, publisher, and what capabilities the app
requires. Capabilities include access to webcams, microphones, the Internet, and
parts of the file system–specifically, the user’s pictures, music, and videos libraries.

6. Change the app’s display name to “Contoso Cookbook” and its description to
“Contoso Cookbook Application”, as shown in Figure 6.

10Lab 1: Creating a Windows Store App

Figure 7: Changing the name in the Manifest

7. In the Visual Assets tab, enter “Assets\WideLogo.scale-100.png” into the Wide logo
box, to give the app a wide tile.

Figure 8: Adding a wide tile

8. Press F5 to start the app.

9. Watch as the app starts up. Is the splash screen (the screen that is briefly shown as the
app loads) different from before?

10. Go to the Windows Start screen and confirm that it contains a tile like this. If you
want the name to show up, you need to add a Short Name in the Visual Assets tab,
and check the checkboxes for the Tile sizes for which you want to show the name.

Lab 1: Creating a Windows Store App11

Figure 9: The New App Tile

Note: If you would prefer a square tile, right-click the wide tile (or on a touch screen,
hold the tile briefly and let go), and then click Resizein the app bar. You can choose
between Small, Medium, and Wide. Feel free to make a large tile as well.

11. Return to Visual Studio and stop debugging.

12Lab 1: Creating a Windows Store App

Exercise 2: LoadingRecipe Data
The project already includes sample data, but you will want to replace it with data of your
own. In Exercise 2, you will replace the sample data with real recipe data, complete with
recipe images.

Task 1 – Import Recipe Data Classes
The first step is to replace the sample data classes provided by Visual Studio with recipe
data classes.

1. Right-click the DataModel folder in Solution Explorer and use the Add > Existing
Item command to import RecipeDataSource.csand RecipeData.jsonfrom the data
folder of the starting materials.

Note: Visual Studio provided you with a file named SampleDataSource.cs that
contains data classes namedSampleDataItem, SampleDataGroup, and
SampleDataSource. RecipeDataSource.cs contains versions of those same classes
adapted to recipe data: RecipeDataItem, RecipeDataGroup, and
RecipeDataSource. RecipeDataSource.cs contains methods named
GetGroupsAsync, which loads recipe data from the files you just added, or from
Windows Azure. It also includes all the Windows.Data.Json code needed to parse
the JavaScript Object Notation (JSON) recipe data and load it into instances of
RecipeDataItem and RecipeDataGroup. Feel free to look inside to understand how
it loads and consumes the data. In particular, check out the how it usesthe Windows
Runtime HttpClient class to load recipe data from the cloud.

2. Open GroupedItemsPage.xaml.cs and change all references to SampleDataSource
class to the RecipeDataSource class, all references to the SampleDataGroup class
to the RecipeDataGroupclass, and all references to the SampleDataItem class to
the RecipeDataItem class.

3. Do the same in GroupDetailPage.xaml.cs.

4. Do the same in ItemDetailPage.xaml.cs.

Task 2 – Load Recipe Pictures
The next task is to import recipe images and modify the app to load recipe data.

1. Add a folder named Images to the project.

2. Import the folders named tiles, Chinese, French, German, Indian, Italian, and
Mexican (along with their contents) from the Images folder of the starting materials
to the project’s Images folder. It is important to put these folders in the Images folder,
because the URLs in RecipesData.json assume that is where they are located.

Lab 1: Creating a Windows Store App13

Note:An easy way to import the folders is to drag them from File Explorer in
Windows and drop them onto the Images folder in Solution Explorer.

Note:TheRecipeDataSource.GetGroups method reads JSON recipe data from the
RecipeData.json file that you imported. The image URLs in RecipeData.jsonrefer to
images in the project’s Images folder. If you prefer, you can download recipe data
from Windows Azure by setting the useLocalData variable to false in
GetRecipeDataAsync. Recipe data and images will then come from the cloud rather
than from local resources. If you decide to go this route, you can remove Recipes.txt
from the project. However, the Images folder must remain because it contains
150 x 150-pixel recipe images that are used to create secondary tiles in Lab 6.
Secondary tile images must be local resources; they cannot be loaded remotely.

Task 3 – Test the Results
Now it is time to run the app and see how Contoso Cookbook has changed.

1. Press F5 to debug the app and verify that the start page looks like this.

Figure 8: The Start Page with Recipes

2. Return to Visual Studio and stop debugging.

14Lab 1: Creating a Windows Store App

Exercise 3: Customize the UI
That is a great start, considering that we have written precious little code so far, but we need to
customize the UI and mold it to our domain-specific data model. In this exercise, you will modify
the Start page, the item-detail page, and the group-detail page to refine the look of Contoso
Cookbook.

Task 1 – Modify the Start Page
Let us begin by modifying the Start page to improve the look of the recipe items.

1. Open GroupedItemsPage.xaml.

2. Find the DataTemplate element in the GridView that has a Grid with a width and
Height of 250. This is the data template used to render recipe items on the Start page.

3. Remove the final TextBlock element in the data template (the TextBlock whose
Text property is bound to “Subtitle”), because the RecipeDataItem class does not
have a Subtitle property.

4. In the same data template, change the width and height of the Grid element to 320 by
240 to preserve the original aspect ratio of the recipe images. Also, change the height
of the remaining TextBlock from 60 to 48 to decrease the height of the partially
transparent overlay at the bottom of each item. When you are done, your code will
look like this.

XAML
<GridView.ItemTemplate>
<DataTemplate>
<Grid HorizontalAlignment="Left" Width="320" Height="240">
<Border Background="{ThemeResource
ListViewItemPlaceholderBackgroundThemeBrush}">
<Image Source="{Binding ImagePath}" Stretch="UniformToFill"
AutomationProperties.Name="{Binding Title}"/>
</Border>
<StackPanel VerticalAlignment="Bottom" Background="{ThemeResource
ListViewItemOverlayBackgroundThemeBrush}">
<TextBlock Text="{Binding Title}" Foreground="{ThemeResource
ListViewItemOverlayForegroundThemeBrush}" Style="{StaticResource
TitleTextBlockStyle}" Height="48" Margin="15,0,15,0"/>
</StackPanel>
</Grid>
</DataTemplate>
</GridView.ItemTemplate>

5. Press F5 to run the app. Confirm that the recipe items on the start page look like the
ones shown here.

Lab 1: Creating a Windows Store App15

Figure 9: The New and Improved Start Page

6. Return to Visual Studio and stop debugging.

Task 2 – Modify the Group-Detail Page
You have modified the start page to improve the look of the app, but you also need to
modify the group-detail page. In this task, you will revise that page to make group details
more presentable.

1. Start the app again and tap Chinese in the upper-left corner of the screen to go to the
group-detail page that shows Chinese recipes. The changes we will make here are
minor: closing up some of the space between “Chinese” and the image below it,
replacing recipe titles with short titles, and adding a preparation time to each recipe.

2. Return to Visual Studio and stop debugging.

3. Open GroupDetailPage.xaml and find the GridView.Header element. Remove the
first TextBlock. In the Image element on the next line, replace ‘Height="400"’ with
‘Width="480"’ and change the top margin from 0 to 10. Your code should now look
like this.

XAML
<GridView.Header>

 <StackPanel Width="480" Margin="0,4,14,0">

 <Image Source="{Binding Image}" Height="480" Margin="0,10,18
,20" Stretch="UniformToFill" AutomationProperties.Name="{Binding Tit
le}"/>

 <TextBlock Text="{Binding Description}" Margin="0,0,18,0" St
yle="{StaticResource BodyTextStyle}"/>

16Lab 1: Creating a Windows Store App

 </StackPanel>

</GridView.Header>

4. A little up in the file, find the DataTemplate element with a width of 480 and a
height of 110. This is the data template used to render recipe items on the group-
detail page.

5. Change the width of the Grid in the data template from 480 to 360.

6. Remove the ‘Width="110"’ attribute from the Border inside the data template to
preserve the aspect ratios of the recipe images. Do leave the ‘Height="110"’ attribute.

7. Remove the two TextBlock elements whose Text properties are bound to the data
source’s Subtitle and Description properties.

8. Underneath that TextBlock, add the following statements to include a preparation
time below the recipe title.

XAML
<StackPanel Orientation="Horizontal">

 <TextBlock Text="Preparation time:" Style="{StaticResource BodyT
extBlockStyle}" />

 <TextBlock Text="{Binding PrepTime}" Style="{StaticResource Body
TextBlockStyle}" Margin="4,0,4,0" />

 <TextBlock Text="minutes" Style="{StaticResource BodyTextBlockSt
yle}" />

</StackPanel>

9. When you are done, here is what the modified data template should look like.

XAML
<DataTemplate>

<Grid Height="110" Width="360" Margin="10">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto"/>

<ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>

<Border Background="{ThemeResource
ListViewItemPlaceholderBackgroundThemeBrush}" Height="110">

<Image Source="{Binding ImagePath}" Stretch="UniformToFill"
AutomationProperties.Name="{Binding Title}"/>

</Border>

<StackPanel Grid.Column="1" VerticalAlignment="Top" Margin="10,0,0,0">

Lab 1: Creating a Windows Store App17

<TextBlock Text="{Binding Title}" Style="{StaticResource
TitleTextBlockStyle}" TextWrapping="NoWrap"/>

<StackPanel Orientation="Horizontal">

<TextBlock Text="Preparation time:" Style="{StaticResource
BodyTextBlockStyle}" />

<TextBlock Text="{Binding PrepTime}" Style="{StaticResource
BodyTextBlockStyle}" Margin="4,0,4,0" />

<TextBlock Text="minutes" Style="{StaticResource BodyTextBlockStyle}" />

</StackPanel>

</StackPanel>

</Grid>

</DataTemplate>

10. Start the app and tap any group header. Verify that your group-detail page resembles
this one.

Figure 10: The Modified Group-Detail Page

11. Return to Visual Studio and stop debugging.

Task 3 – Modify the Item-Detail Page
The final task in crafting a basic UI for the app is to modify the item-detail page to
present more info about recipes, including directions and ingredients.

1. Run the app and tap Fried Dumpling. Clearly, we have some work to do on the
item-detail page.

18Lab 1: Creating a Windows Store App

2. Return to Visual Studio and stop debugging.

3. Right-click the Common folder in Solution Explorer and use the Add > New Item
command to add a new class to the project. Name the file ListConverter.cs.

A. Hint: To add the new class, select the Code group under Visual C# and then
select Class.

4. Replace the file’s contents with this code.

C#
using System;

using System.Collections.Generic;

using System.Collections.ObjectModel;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using Windows.UI.Xaml.Data;

namespace ContosoCookbook.Common

{

 class ListConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

object parameter, string language)

 {

 ObservableCollection<string> items = (ObservableCollecti
on<string>)value;

 StringBuilder builder = new StringBuilder();

 foreach (var item in items)

 {

 builder.Append(item);

 builder.Append("\r\n");

 }

 return builder.ToString();

 }

Lab 1: Creating a Windows Store App19

 public object ConvertBack(object value, Type targetType, obj
ect parameter, string language)

 {

 throw new NotImplementedException();

 }

 }

}

Note: ListConverter is a value converter that converts an array of strings into a single
string containing line breaks. We need it because we will be binding the Text property
of a TextBlock to an array of strings, and that requires a value converter.

5. Open ItemDetailPage.xaml and add the following statement to the
<Page.Resources> section near the top of the file to declare a ListConverter
instance.

XAML
<Page.Resources>
<common:ListConverter x:Key="ListConverter" />

</Page.Resources>
6. Replace the Grid element with this one.

XAML
<Grid Grid.Row="1" x:Name="contentRegion">
<ScrollViewer x:Name="landscapeContent" Grid.Row="1">
<Grid Margin="120,0,20,20">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="400" />
<ColumnDefinition Width="40" />
<ColumnDefinition Width="360" />
<ColumnDefinition Width="40" />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<StackPanel Orientation="Vertical" Grid.Column="0">
<Image Width="400" Margin="0,20,0,10" Stretch="Uniform" Source="{Binding
ImagePath}"/>
<StackPanel Orientation="Horizontal">
<TextBlock FontSize="26.667" FontWeight="Light" Text="Preparation time:"/>
<TextBlock FontSize="26.667" FontWeight="Light" Text="{Binding PrepTime}"
Margin="10,0,8,0"/>
<TextBlock FontSize="26.667" FontWeight="Light" Text="minutes"/>
</StackPanel>
</StackPanel>

<StackPanel Orientation="Vertical" Grid.Column="2">
<TextBlock FontSize="26.667" FontWeight="Light" Text="Ingredients"
Margin="0,0,0,16"/>

20Lab 1: Creating a Windows Store App

<TextBlock FontSize="20" FontWeight="Light" LineHeight="28" Text="{Binding
Ingredients, Converter={StaticResource ListConverter}}" TextWrapping="Wrap"
/>
</StackPanel>

<StackPanel Orientation="Vertical" Grid.Column="4">
<TextBlock FontSize="26.667" FontWeight="Light" Text="Directions"
Margin="0,0,0,16"/>
<TextBlock FontSize="20" FontWeight="Light" Text="{Binding Directions}"
Margin="0,0,40,0" TextWrapping="Wrap" />
</StackPanel>
</Grid>
</ScrollViewer>

<ScrollViewer x:Name="portraitContent" Grid.Row="1" Visibility="Collapsed">
<StackPanel Orientation="Vertical" Margin="120,0,20,20">
<Image Width="400" Margin="0,20,0,10" Stretch="Uniform" Source="{Binding
ImagePath}" HorizontalAlignment="Left"/>
<StackPanel Orientation="Horizontal">
<TextBlock FontSize="26.667" FontWeight="Light" Text="Preparation time:"/>
<TextBlock FontSize="26.667" FontWeight="Light" Text="{Binding PrepTime}"
Margin="10,0,8,0"/>
<TextBlock FontSize="26.667" FontWeight="Light" Text="minutes"/>
</StackPanel>
<TextBlock FontSize="26.667" FontWeight="Light" Text="Ingredients"
Margin="0,24,0,8"/>
<TextBlock FontSize="20" FontWeight="Light" LineHeight="28" Text="{Binding
Ingredients, Converter={StaticResource ListConverter}}" TextWrapping="Wrap"
/>
<TextBlock FontSize="26.667" FontWeight="Light" Text="Directions"
Margin="0,24,0,8"/>
<TextBlock FontSize="20" FontWeight="Light" Text="{Binding Directions}"
Margin="0,0,40,0" TextWrapping="Wrap" />
</StackPanel>
</ScrollViewer>
</Grid>

Note: The new data template shows recipes in a 3-column format. The recipe name,
image, and preparation time appear in column 1, a list of ingredients appears in
column 2, and cooking directions appear in column 3.

7. Now run the app again. Tap Fried Dumpling and verify that the item-detail page
looks like the one in Figure 11.

Lab 1: Creating a Windows Store App21

Figure 11: The Modified Item-Detail Page

8. Return to Visual Studio and stop debugging.

Summary
In this lab, you created a new Windows Store app using the Grid App project in Visual
Studio. Then you replaced the sample data with real data, replaced the default branding
assets with ones tailored to the app, and customized the UI by modifying some of the
XAML provided by Visual Studio. Moreover, you got a first-hand look at how a project
is structured and how the pieces fit together.

You also imported code that demonstrates how the HttpClient class can be used to load
data from a remote data source and how the Windows.Data.Json classes in the Windows
Runtime can be used to consume JSON data in C#. By modifying data templates, you
customized the way this data is presented to the user.

There is still more to do to make Contoso Cookbook a first-class app for the Windows
Store. The journey continues in lab 2.

