
1 von 74School of Engineering © K. Rege, ZHAW

New Features since 2.0

■ Automatic Properties

■ Object and Collection Initializers

■ Anonymous Types

■ Partial Methods

■ Extension Methods

■ Lambda Expressions

■ LINQ

■ Dynamic Typing

■ Optional and Named Parameters

■ Safe Co- and Contra-Variance for Generic Types

■ await and async

2 von 74School of Engineering © K. Rege, ZHAW

C# 1.0
Managed Code

C# 2.0
Generics

C# 3.0
Language Integrated Query

C# 4.0
Dynamic Typing

C# Evolution

Asynchronous ProgrammingC# 4.5

3 von 74School of Engineering © K. Rege, ZHAW

Automatic Properties

4 von 74School of Engineering © K. Rege, ZHAW

Automatic Properties
The following pattern is very common

private string name;

public string Name {
get { return name; }
set { name = value; }

}

Instead of that, one can simply write

public string Name { get; set; }

compiler generates the private field and the get/set accessors

must be get; and set;

set can be declared private

public string Name { get; private set;
}

■ can only be set by the declaring class
■ other classes can only read it

(kind of read-only)

5 von 74School of Engineering © K. Rege, ZHAW

Object and Collection Initializers

6 von 74School of Engineering © K. Rege, ZHAW

Object Initializers

If you have a class (or a struct) with properties or fields like this

class Student {
public string Name;
public int Id;
public string Field { get; set; }

public Student() {}
public Student(string name) { Name = name; }

}

you can create and initialize an object as follows:

Student s1 = new Student("John") {Id = 2009001, Field = "Computing" };
Student s2 = new Student {Name = "Ann", Id = 2009002, Field = "Mathematics" };

empty brackets can be omitted

■ For creating and initializing objects in a single expression

7 von 74School of Engineering © K. Rege, ZHAW

var intList = new List<int> { 1, 2, 3, 4, 5 };

Collection Initializers

Values can be specified after creation

Compiler translates this into

List<int> intList = new List<int>();
intList.Add(1); intList.Add(2); intList.Add(3);
intList.Add(4); intList.Add(5);

all collections support the Add method

var personList = new List<Student> {
new Student("John") {Field = "Computing" },
new Student("Ann") {Field = "Mathematics" }

};

collection initializers and object
initializers can be combined

var phoneBook = new Dictionary<string, int>
{
{ "John Doe", 4711 },
{ "Alice Miller", 3456 },
{ "Lucy Sky", 7256 }

};

initialization of a two-dimensional
collection

■ For creating and initializing collections in a single expression

8 von 74School of Engineering © K. Rege, ZHAW

Anonymous Types

9 von 74School of Engineering © K. Rege, ZHAW

Anonymous Types

var obj = new { Name = "John", Id = 100 };

■ For creating tuples of an anonymous (i.e. nameless) type

class ??? {
public string Name { get; private set; }
public int Id { get;private set; }

}creates an object of a new type
with the properties Name and Id

the type of the right-hand side value
type inference!

??? obj = new ???();
obj.Name = "John";
obj.Id = 100;

■ Even simpler, if the values are composed from existing names

class Student {
public string Name;
public int Id { get; set; }

}
...
Student s = new Student();
string city = "London";

var obj = new {s.Name, s.Id, city}; anonymous type with properties Name, Id and city

■ properties of a existing object
■ fields of an existing object
■ local variables

10 von 74School of Engineering © K. Rege, ZHAW

… Anonymous Types -- Details

var obj = new { Id = x, student.Name };

■ Generated properties (Id, Name) are read only!

■ Generated properties can be named explicitly (Id = x) or implicitly (student.Name).
Explicit and implicit naming can be mixed (although uncommon).

■ Anonymous types are compatible with Object

■ Compiler generates a ToString() method for every anonymous type

Console.WriteLine(obj); { Id = 1234, Name = "John Doe" }

11 von 74School of Engineering © K. Rege, ZHAW

Type Inference -- var
var x = ...;

■ var can only be used for local variable declarations (not for parameters and fields)

■ variable must be initialized in the declaration
■ the type of the variable is inferred from the initialization expression

Typical usage

var obj = new { Width = 100, Height = 50 };

var dict = new Dictionary<string, int>();

??? obj = ...

Dictionary<string, int> dict =
new Dictionary<string, int>();

In principle, the following is also possible

var x = 3;
var s = "John";

but this is not recommended!

int x = 3;
string s = "John";

12 von 74School of Engineering © K. Rege, ZHAW

Partial Methods

13 von 74School of Engineering © K. Rege, ZHAW

Partial Methods

■ For providing user-defined hooks in automatically generated code

Example

public partial class Accelerator {

public void Accelerate() {
BeforeAccelerate();
... do accelerate actions ...
AfterAccelerate();

}

partial void BeforeAccelerate();
partial void AfterAccelerate();

}

■ must be partial methods in a partial class
or struct

■ must not have private, public, ...
■ must be void
■ must not have out parameters

Compiler does not generate calls

... unless some other part of this class supplies the bodies

public partial class Accelerator {

partial void BeforeAccelerate() { ... }
partial void AfterAccelerate() { ... }

}

14 von 74School of Engineering © K. Rege, ZHAW School of Engineering © K. Rege, ZHAW

Another Example

■ Enabling/disabling trace output

partial class Stack {
int[] data = new int[100];
int len = 0;

public void Push(int x) {
Print("-- Push " + x + ", len = " + (len + 1));
data[len++] = x;

}

public int Pop() {
Print("-- Pop " + data[len-1] + ", len = " + (len - 1));
return data[--len];

}

partial void Print(string s);
}

Stack s = new Stack();
s.Push(3);
int x = s.Pop();

no trace output so far

partial class Stack {

partial void Print(string s) {
Console.WriteLine(s);

}
}

■ Now we compile also the second part of Stack
Output
-- Push 3, len = 1
-- Pop 3, len = 0

15 von 74School of Engineering © K. Rege, ZHAW

Extension Methods

16 von 74School of Engineering © K. Rege, ZHAW

Extension Methods

■ Allow programmers to add functionality to an existing class

Existing class Fraction

class Fraction {
public int z, n;
public Fraction
 (int z,int n) {...}
...

}

Extension methods for class Fraction

static class FractionUtils {

public static Fraction Inverse (this Fraction f) {
return new Fraction(f.n, f.z);

}

public static void Add (this Fraction f, int x) {
f.z += x * f.n;

}
}

■ must be declared in a static class
■ must be static methods
■ first parameter must be declared with this

and must denote the class, to which the
method should be added

Fraction f = new Fraction(1, 2);

f = f.Inverse();
// f = FractionUtils.Inverse(f);

f.Add(2);
// FractionUtils.Add(f, 2);

Usage

■ Can be called like instance methods of Fraction

■ However, can only access public members of Fraction

Assume that we want to extend it
with an Inverse and an Add method

17 von 74School of Engineering © K. Rege, ZHAW

Predeclared Extension Methods

namespace System.Linq {

public static class Enumerable {

public static IEnumerable<T> Where<T> (this IEnumerable<T> source, Func<T, bool> f) {
... returns all values x from source, for which f(x) == true ...

}
...

}
}

System.Linq.Enumerable has predeclared extension methods for IEnumerable<T>

using System.Linq;
...
List<int> list = ... list of integer values ...;
IEnumerable<int> result = list.Where(i => i > 0);

foreach(int i in list.Where(i => i > 0) {Console.WriteLine(“”+i));}

Usage makes Where visible
Enumerable.Where(list, i => i > 0)

Compiler does type inference

list is declared as List<int>
==> T = int
==> i is of type int

Can be applied to all collections and arrays!

string[] a = {"Bob", "Ann", "Sue", "Bart"};
IEnumerable<string> result =
a.Where(s => s.StartsWith("B"));

delegate TRes Func<T1, TRes>(T1 a);

18 von 74School of Engineering © K. Rege, ZHAW

Lambda Expressions

19 von 74School of Engineering © K. Rege, ZHAW

λ Calculus

■ Functions are fundamental in computer science and mathematics

■ in mathematics
■ values in the domain

are transformed to values in the
range

■ f x -> y

■ in computer science
■ input is transformed to some output

■ Examples
■ I (x) = x -> x
■ Sqr(x) = x -> x2

■ If you don't bother to name the function you simply call them λ
■ λx.x2

■ λ calculus is important part of the theoretical computer science (Church 1940)
■ e.g. higher order functions = functions as arguments (e.g. differentiation)

domain range

20 von 74School of Engineering © K. Rege, ZHAW

Functional Programming

■ Imperative programming (also object oriented) is based on states (of the

programs and objects) and mutable data (value of variables)

■ Functional programming is a programming paradigm that treats computation as
the evaluation of mathematical functions

■ "pure" functional programming has no states and no mutable data

■ History
■ Early functional programming languages (1960)

■ LISP, APL, ML

■ Revival
■ mixed languages, functional extensions to non-functional languages
■ Scala, clojure, C# 3.0

■ Purely functional programs have no shared state thus simplify concurrent

programming

21 von 74School of Engineering © K. Rege, ZHAW

C# Lambda Expressions

= Short form for delegate values

delegate int Function(int x); int Square(int x) { return x * x; }
int Inc(int x) { return x + 1; }

Function f;
f = new Function(Square); ... f(3) ... // 9
f = new Function(Inc); ... f(3) ... // 4

C# 1.0

C# 2.0
f = delegate (int x) { return x * x; } ... f(3) ... // 9
f = delegate (int x) { return x + 1; } ... f(3) ... // 4

C# 3.0
f = x => x * x; ... f(3) ... // 9
f = x => x + 1; ... f(3) ... // 4

22 von 74School of Engineering © K. Rege, ZHAW

Example for Lambda Expressions

Applying a function to a sequence of integers

int[] Apply (Function f, int[] data) {
int[] result = new int[data.Length];
for (int i = 0; i < data.Length; i++) {
result[i] = f(data[i]);

}
return result;

}

int[] values = Apply (i => i * i , new int[] {1, 2, 3, 4});

=> 1, 4, 9, 16

delegate int Function (int x);

23 von 74School of Engineering © K. Rege, ZHAW

Lambda Expressions -- Details

General form Parameters "=>" (Expr | Block)

Lambdas can have 0, 1 or more parameters

() => ...
x => ...
(x, y) => ...
(x, y, z) => ...

// no parameters
// 1 parameter
// 2 parameters
// 3 parameters

Parameters can have types as well as ref/out modifiers

(int x) => ...
(string s, int x) => ...
(ref int x) => ...
(int x, out int y) => ...

// must be in brackets although
just 1 parameter

Parameter types are usually not specified;
They are inferred from the declaration of the delegate to which they are assigned

delegate bool Func(int x, int y);

Func f = (x, y) => x > y;

must be int must be bool

24 von 74School of Engineering © K. Rege, ZHAW

… Lambda Expressions -- Details

Parameters "=>" (Expr | Block)

Right-hand side is usually a result expression

x => x * x
(x, y) => x + y

Right-hand side can be a block returning a result

n =>{int sum = 0;
for (int i = 1; i <= n; i++) sum += i;
return sum;
}

// returns x * x
// returns x + y

Right-hand side can access outer local variables (-> closures)

int sum = 0;
Proc p = x => { sum += x; };

Right-hand side does not return a result if the corresponding delegate is a
void method
delegate void Proc(int x);

Proc p = x => { Console.WriteLine(x); };

25 von 74School of Engineering © K. Rege, ZHAW

… Lambda Expressions -- Generic Delegate

■ Delegate Type

■ Generic Delegate Type
■ are also supported since C# 2.0

delegate int Func ();
delegate double Func (double p);

public delegate void Del<T>(T item);

public static void Notify(int i) { }

Del<int> m1 = new Del<int>(Notify);

26 von 74School of Engineering © K. Rege, ZHAW

… Lambda Expressions -- Examples

Namespace System.Linq defines several generic delegate types

delegate TRes Func<TRes> ();
delegate TRes Func<T1, TRes> (T1 a);
delegate TRes Func<T1, T2, TRes> (T1 a, T2 b);
delegate TRes Func<T1, T2, T3, TRes> (T1 a, T2 b, T3 c);
delegate TRes Func<T1, T2, T3, T4, TRes> (T1 a, T2 b, T3 c, T4 d);

delegate void Action ();
delegate void Action<T1> (T1 a);
delegate void Action<T1, T2> (T1 a, T2 b);
delegate void Action<T1, T2, T3> (T1 a, T2 b, T3 c);
delegate void Action<T1, T2, T3, T4> (T1 a, T2 b, T3 c, T4 d);

Examples
Func<int, int> f1 = x => 2 * x + 1;

Func<int, int, bool> f2 = (x, y) => x > y;

Func<string, int, string> f3 = (s, i) => s.Substring(i);

Func<int[]> f4 = () => new int[] { 1, 2, 3, 4, 5 };

Action a1 = () => { Console.WriteLine("Hello"); };

Action<int, int> a2 = (x, y) => { Console.WriteLine(x + y); };

f1(3);

f2(5, 3);

f3("Hello", 2);

f4();

a1();

a2(1, 2);

7

true

"llo"

{1, 2, 3, 4,5}

Hello

3

Call Result

27 von 74School of Engineering © K. Rege, ZHAW

LINQ

28 von 74School of Engineering © K. Rege, ZHAW

LINQ - Language Integrated Query

SQL-like queries in C#

■ LINQ to Objects Queries on arrays and collections (IEnumerable<T>)

■ LINQ to SQL Queries on databases (generating SQL)

■ LINQ to XML Queries that generate XML

Everything is fully type checked!

Conceptual novelties of LINQ

■ Brings programming and databases closer together

■ Integrates functional programming concepts into C# (lambda
expressions)

■ Promotes declarative programming style (anonymous types, object
initializers)

■ Introduces type inference

Namespaces: System.Linq, System.Xml.Linq, System.Data.Linq

29 von 74School of Engineering © K. Rege, ZHAW School of Engineering © K. Rege, ZHAW

LINQ Queries to Objects (Example)

SQL-like queries on arbitrary collections (IEnumerable<T>)

string[] cities = {"London", "New York", "Paris", "Berlin", "Berikon"};

Sample collection

Query

IEnumerable<string> result =
from c in cities
select c;

foreach (string s in result) Console.WriteLine(s);

Result

London
New York
Paris
Berlin
Berikon

IEnumerable<string> result =
from c in cities
where c.StartsWith("B")
orderby c
select c.ToUpper();

Berikon
Berlin

LINQ queries are translated into lambda expressions and extension methods

30 von 74School of Engineering © K. Rege, ZHAW

Query Expressions

31 von 74School of Engineering © K. Rege, ZHAW

Translation of Query Expressions

class Student {
public int Id { get; set; }
public string Name { get; set; }
public string Subject { get; set; }

}

List<Student> students = ...;

Example: Assume that we have the following declarations

foreach (var s in result)
Console.WriteLine(s.Id + " " + s.Name);

var result =
from s in students
where s.Subject == "Computing"
orderby s.Name
select new {s.Id, s.Name};

var result =
students
.Where(s => s.Subject == "Computing")
.OrderBy(s => s.Name)
.Select(s => new {s.Id, s.Name});

Translation lambda expressions

extension methods of
IEnumerable<T>

anonymous
type

32 von 74School of Engineering © K. Rege, ZHAW

A Closer Look at the Query Syntax

var result = from s in students

where s.Subject == "Computing"

orderby s.Name

select new { s.Id, s.Name };

range variable data source (supporting IEnumerable<T>)

projection

clauses

Note: The result is not a sequence of values but a "cursor" that is advanced when necessary
(e.g. in a foreach loop or in other queries)

result is IEnumerable<T'> where T' is the type of the projection

7 kinds of query clauses

from defines a range variable and a data source

where filters elements of the data source
orderby sorts elements of the data source

select projects range variable(s) to elements of the result sequence

group groups data source elements (converts sequence of elements into
sequence of groups)

join joins elements of multiple data sources

let defines auxiliary variables

33 von 74School of Engineering © K. Rege, ZHAW

LINK Query Syntax

QueryExpr =
"from" [Type] variable "in" SrcExpr
QueryBody.

QueryBody =
{ "from" [Type] variable "in" SrcExpr
| "where" BoolExpr
| "orderby" Expr ["descending"] { "," Expr ["descending"] }
| "join" [Type] variable "in" SrcExpr "on" Expr "equals" Expr ["into" variable]
| "let" variable "=" Expr
}
("select" ProjectionExpr ["into" variable QueryBody]
| "group" ProjectionExpr "by" Expr ["into" variable QueryBody]
).

SrcExpr a data source implementing IEnumerable<T>

BoolExpr a C# expression of type bool

Expr a C# expression
ProjectionExpr a C# expression defining the result elements

expressions on
the range variable(s)

Note: Query has to start with a from
Query has to end with a select or group

34 von 74School of Engineering © K. Rege, ZHAW

Range Variables

■ Introduced in from and join clauses (also in into phrases)
from s in students
join m in marks on s.Id equals m.Id
group s by s.Subject into g

■ Iterate over elements of the data source

■ Range variables are read only!

■ Scoping:
■ their names must be distinct from the names of outer local variables
■ their scope ends at the end of the query expression or at the next into phrase

■ If the data source is of type IEnumerable<T> the range variable is of type T
(the type can also be explicitly specified)

students is of type List<Student>
s is of type Student

35 von 74School of Engineering © K. Rege, ZHAW

Grouping

■ Transforms input elements into key/value pairs
■ Collects values with the same key into a group

var result =
from s in students
group s.Name by s.Subject;

keyvalue

Name="John", Id=2009001, Subject="Computing"
Name="Ann", Id=2009002, Subject="Mathematics"
Name="Sue", Id=2009003, Subject="Computing"
Name="Bob", Id=2009004, Subject="Mathematics"
...

("Computing", "John")
("Mathematics", "Ann")
("Computing", "Sue")
("Mathematics", "Bob")
...

"Computing": ("John", "Sue")
"Mathematics": ("Ann", "Bob")
...

List<Student> key/value pairs IEnumerable<IGrouping>

IGrouping<TKey, TElement>

■ property Key
■ group is of type IEnumerable<TElement>

foreach (var group in result) {
Console.WriteLine(group.Key);
foreach (var name in group) Console.WriteLine(" " + name);

}

Computing
John
Sue

Mathematics
Ann
Bob

...

result

36 von 74School of Engineering © K. Rege, ZHAW

Grouping into another Range Variable

■ Necessary when you want to process the groups further

var result =
from s in students
group s by s.Subject into g
select new { Field = g.Key, N = g.Count() };

s is not visible here any more
but g is visible

foreach (var x in result) {
Console.WriteLine(x.Field + " occurs " +

x.N + " times");
}

Computing occurs 2
times
Mathematics occurs 2
times
...

foreach (var x in result) Console.WriteLine(x); { Field = Computing, N = 2 }
{ Field = Mathematics, N = 2 }
...

calls x.ToString() of anonymous type

group s ...
into g

converts a sequence of students into a sequence of
groups

37 von 74School of Engineering © K. Rege, ZHAW

Joins

■ Combines records from multiple data sources if their keys match

class Student {
public int Id { get; set; }
public string Name { get; set; }
public string Subject { get; set; }

}

class Marking {
public int StudId { get; set; }
public string Course { get; set; }
public int Mark { get; set; }

}

var students = new List<Student> {...};

2008001
2008002
2009001
2009002
...

"John Doe"
"Linda Miller"
"Ann Foster"
"Sam Dough"
...

"Computing"
"Chemistry"
"Mathematics"
"Computing"
...

Id Name Subject

var marks = new List<Marking> {...};

2008001
2008001
2008001
2008002
...

"Programming"
"Databases"
"Computer Graphics"
"Organic Chemistry"
...

3
2
1
1
...

StudId Course Mark

var result =
from s in students
join m in marks on s.Id equals m.StudId
select s.Name + ", " + m.Course + ", " + m.Mark;

John Doe, Programming, 3
John Doe, Databases, 2
John Doe, Computer Graphics, 1
Linda Miller, Organic Chemistry, 1
...

■ Join (explicit)
must be "equals"
and not "=="

38 von 74School of Engineering © K. Rege, ZHAW

Joins (implicit)

■ Alternative way to specify the Join

var result =
from s in students
from m in marks
where s.Id == m.StudId
select s.Name + ", " + m.Course + ", " + m.Mark;

John Doe, Programming, 3
John Doe, Databases, 2
John Doe, Computer Graphics, 1
Linda Miller, Organic Chemistry, 1
...

■ Result is the same but the query is less efficient

■ builds the cross product (combines every student with every mark)

■ filters out those results that match the where clause

39 von 74School of Engineering © K. Rege, ZHAW

Group Joins

■ Makes matching records from the second data source a subgroup

var result =
from s in students
join m in marks on s.Id equals m.StudId into list
select new { Name = s.Name, Marks = list };

John Doe 2008001, Programming, 3
2008001, Databases, 2
2008001, Computer Graphics, 1

Linda Miller 2008002, Organic Chemistry, 1
2008002, Mathematics, 2

...

Name Marks

does not become invisible by into

foreach (var group in result) {
Console.WriteLine(group.Name);
foreach (var m in group) {
Console.WriteLine(" " + m.Course + ", " + m.Mark);

}
}

John Doe
Programming, 3
Databases, 2
Computer Graphics, 1

Linda Miller
Organic Chemistry, 1
Mathematics, 2

...

■ Processing the result

40 von 74School of Engineering © K. Rege, ZHAW

let Clauses

■ Introduce auxiliary variables that can be used like range variables

var result =
from s in students
where s.Subject == "Computing"
let year = s.Id / 1000
where year == 2009
select s.Name;

2008001
2008002
2009001
2009002
...

"John Doe"
"Linda Miller"
"Ann Foster"
"Sam Dough"
...

"Computing"
"Chemistry"
"Mathematics"
"Computing"
...

Id Name Subject

foreach (string s in
result) {
Console.WriteLine(s);

}

Sam Dough

Result

41 von 74School of Engineering © K. Rege, ZHAW

Further Extension Methods

■ In class System.Linq.Enumerable

Can be applied to all IEnumerable<T>: query results, collections, arrays, ...

e.Any(i => i < 0) true, if any element of e is < 0
e.All(i => i > 0) true, if all elements of e are > 0

e.Take(3) takes the first 3 elements of e
e.Skip(2) drops the first 2 elements of e
e.TakeWhile(i => i < 1000) takes elements from e as long as predicate is true
e.SkipWhile(i => i < 100) drops elements from e as long as predicate is true

e.Distinct() yields e without duplicates
e.Concat(e2) appends e2 to e
e.Reverse() yields e in reverse order

e.ToList() converts an IEnumerable<T> into a List<T>
e.ToArray() converts an IEnumerable<T> into a T[]
e.OfType<string>() yields all elements of e that are of type string
...

Assume: e is of type IEnumerable<T>

42 von 74School of Engineering © K. Rege, ZHAW

LINQ to XML

43 von 74School of Engineering © K. Rege, ZHAW

XElement and XAttribute

(Namespace System.Xml.Linq)

XElement e = new XElement("name", "John");
Console.WriteLine(e); <name>John</name>

Creating simple elements

XElement e = new XElement("student",
new XElement("name", "John"),
new XElement("subject", "Computing"));

Console.WriteLine(e);

Creating nested elements
<student>
<name>John</name>
<subject>Computing</subject>

</student>

XElement e = new XElement("student",
new XAttribute("id", 2009001),
new XElement("name", "John"),
new XElement("subject", "Computing"));

Console.WriteLine(e);

Creating elements with attributes
<student id=2009001>
<name>John</name>
<subject>Computing</subject>

</student>

XElement e = XElement.Load(new XmlTextReader("input.xml"));

Reading an XML file

44 von 74School of Engineering © K. Rege, ZHAW

Generating XML with LINQ

using System.Linq;
using System.Xml.Linq;
...
XElement xmlData =
new XElement("students",
from s in students
where s.Subject == "Computing"
select new XElement("student",
new XAttribute("id", s.Id),
new XElement("name", s.Name)

)
);

Console.WriteLine(xmlData);

<students>
<student id="2008001">
<name>John Doe</name>

</student>
<student id="2009002">
<name>Sam Dough</name>

</student>
...

</students>

Output

IEnumerable<XElement>

45 von 74School of Engineering © K. Rege, ZHAW

Processing XML with LINQ

using System.Linq;
using System.Xml.Linq;
...
XElement xmlData = ...;

<students>
<student id="2008001">
<name>John Doe</name>

</student>
<student id="2009002">
<name>Sam Dough</name>

</student>
...

</students>

xmlData

IEnumerable<Student> result =
from e in xmlData.Elements("student")
select new Student {
Name = e.Element("name").Value,
Id = Convert.ToInt32(e.Attribute("id").Value),
Subject = "Computing"

};

xmlData.Elements("student") returns all subelements of xmlData
that have the tag name "student"
as an IEnumerable<XElement>

e.Element("name") returns the first subelement of e
that has the tag "name"

46 von 74School of Engineering © K. Rege, ZHAW

LINQ to DataSets

47 von 74School of Engineering © K. Rege, ZHAW

LINQ Queries to DataSets

■ New Versions .NET 4.0 of DataSets support LINQ

■ e.g. SQL type of queries also for DataSet

DataSet ds = new DataSet();
FillOrders(ds); // this method fills the DataSet from a database

DataTable orders = ds.Tables["SalesOrderHeader"];

var query = from o in orders.ToQueryable()
 where o.Field<bool>("OnlineOrderFlag") == true
 select new { SalesOrderID = o.Field<int>("SalesOrderID"),
 OrderDate = o.Field<DateTime>("OrderDate") };

foreach(var order in query) {
 Console.WriteLine("{0}\t{1:d}", order.SalesOrderID, order.OrderDate);
}

http://msdn.microsoft.com/en-us/library/aa697427%28VS.80%29.aspx

48 von 74School of Engineering © K. Rege, ZHAW

New Features in C# 4.0

■ Dynamic Typing

■ Optional and Named Parameters

■ Safe Co- and Contra-Variance for Generic Types

■ ...

released end of 2009
VS 2010

49 von 74School of Engineering © K. Rege, ZHAW

Dynamic Typing

50 von 74School of Engineering © K. Rege, ZHAW

Type dynamic
dynamic d; d can hold a value of any type

Can be considered to be a base type of Object

dynamic

Object

String Person ...

has methods like
ToString, GetType, ...

nothing is known
about this type d = 5;

d = 'x';
d = true;
d = "Hello";
d = new Person();
...

anything can be
assigned to d

possibly
boxing

Difference to var v = ...;

Compiler knows the type of v
but not the type of d

Difference to Object o;
Object is a normal class
which is known to the compiler

For objects whose type is statically unknown

■ objects of dynamic languages (Python, Ruby, ...)
■ COM objects
■ HTML DOM objects
■ objects retrieved via reflection

simplifies interoperation
with dynamic languages

int i = d;
char c = d;
bool b = d;
string s = d;
Person p = d;
...

implicit
conversion back

with run-time
check

51 von 74School of Engineering © K. Rege, ZHAW

Operations on dynamic Variables

■ Have to be checked at run time (defers type checking from compile to run time)

dynamic d;

d.Foo(3); method call ■ does the run-time type of d have a method Foo?
■ does this method have an int parameter?

d.f = ...; field access ■ does the run-time type of d have a field f?
■ does the type of f match the assigned expression?

d.P = d.P + 1; property access ■ does the run-time type of d have a property P?
■ does the type of P match its use?

d[5] = d[3]; indexer access ■ does the run-time type of d have an indexer?
■ does the type of this indexer match its use?

d = d + 1; operator access ■ does the run-time type of d support the operator +?
■ does the result type of this operator match its use?

d(1, 2); delegate call ■ is the run-time type of d a delegate?
■ does this delegate have two int parameters?

■ The result of any dynamic operation is again dynamic

■ Checks to be performed at run time

■ A dynamic operation is about 5-10 times slower than a statically checked operation!

52 von 74School of Engineering © K. Rege, ZHAW

Run-time Lookup
■ How is d.Foo(3) invoked at run time?

Type t = d.GetType()

if (t is a .NET type) {
//--- use reflection to call this method
MethodInfo m = t.GetMethod("Foo", new Type[] {typeof(int)});
if (m == null) throw new Exception(...);
m.Invoke(d, new Object[] {3});

}

For plain .NET objects

else if (t is a COM type) {
//--- use COM's IDispatch mechanism to call the method
... pass (d, t, "Foo", 3) to COM and do the IDispatch ...
... throw an exception if the call is not possible ...

}

For COM objects
(e.g. Excel, Word, ...)

else if (t implements IDynamicObject) {
//--- let IDynamicObject do the call (for dynamic

languages)
... pass (d, t, "Foo", 3) to IDynamicObject ...
... throw an exception if the call is not possible ...

}

For objects of dynamic
languages

Interfacing to other object models is usually done by implementing IDynamicObject

53 von 74School of Engineering © K. Rege, ZHAW

dynamic Overload Resolution

void Foo(string s) {...}
void Foo(int i) {...}

dynamic val = "abc";
Foo(val);

dynamic val = 3;
Foo(val);

will invoke Foo(string)

will invoke Foo(int)

Overload resolution is done at run time if one of the parameters is dynamic

http://www.developerfusion.com/article/9789/c-40-goes-dynamic-a-step-too-far/

54 von 74School of Engineering © K. Rege, ZHAW

Optional and Named Parameters

55 von 74School of Engineering © K. Rege, ZHAW School of Engineering © K. Rege, ZHAW

Optional Parameters

■ Declared with default values in the parameter list

void Sort<T>(T[] array, int from = 0, int to = -1, bool ascending = true,
 bool ignoreCase = false) {

if (to == -1) to = array.Length - 1;
...

}

■ Optional parameters must be declared after the required parameters
■ Default values must be evaluable at compile time (constant expressions)

required optional

would like to use array.Length - 1
but Length is not a compile-time constant

Usage

int[] a = {3, 5, 2, 6, 8, 4};

Sort(a, 0, a.Length - 1, true, false);

Sort(a);

Sort(a, 0, -1);

Sort(a, 0, -1, true);

parameters listed explicitly

from == 0, to == -1, ascending == true, ignoreCase = false

ascending == true, ignoreCase = false

ignoreCase = false

Optional parameters cannot be omitted from the middle

Sort(a, , , true);

56 von 74School of Engineering © K. Rege, ZHAW

Optional Parameters and Named Parameters

Parameters can be identified by name instead of by position

void Foo (int a, int b, int c, int d) {...}

can be called as

Foo(1, 2, 3, 4);
Foo(1, 2, c:3, d:4);
Foo(1, d:4, c:3, b:2);

identified by name
identified by position
- positional parameters must preceed named parameters
- named parameters can occur in any order

Useful for long lists of optional parameters

void Sort<T>(T[] array, from = 0, to = -1, ascending = true, ignoreCase = false) { … }

Sort(a, ascending: true);
Sort(a, ignoreCase: true, from: 3);

57 von 74School of Engineering © K. Rege, ZHAW

Optional Parameters and Overriding

■ Overridden methods can have parameters with different default values

class A {
public virtual void M (int x = 1, int y = 2) { Console.WriteLine(x + ", " + y); }

}

class B: A {
public override void M (int x, int y = 3) { Console.WriteLine(x + ", " + y); }

}

no optional parameter any more

A a = new B();
a.M();

■ Call

calls B.M but output is

1, 2

optional Parameters are passed by the caller
according to the static type of a

=> a.M(1, 2);
B b = new B();
b.M(5);

calls B.M, output is

5, 3

5 must be specified because x is not
optional

=> b.M(5, 3);

58 von 74School of Engineering © K. Rege, ZHAW

Safe Co- and Contra-Variance for Generic Types

59 von 74School of Engineering © K. Rege, ZHAW

Covariance

■ Co-variance: the types are leveled up according the inheritance hierarchy, e.g.

in overwritten methods

■ Can be achieved for interfaces with generics

Class A {
 void foo(A a) {…}
}

Class A {
 void foo(A a) {…}
}

Class B : A {
 void foo(B b) {…}
}

Class B : A {
 void foo(B b) {…}
}

Interface A<E> {
 void foo(E e) {…}
}

Interface A<E> {
 void foo(E e) {…}
}

Class B : A {
 void foo(B e) {…}
}

Class B : A {
 void foo(B e) {…}
}

e.g. Comparable,
compareTo

e.g. Comparable,
compareTo

60 von 74School of Engineering © K. Rege, ZHAW

Situation up to C# 3.0

List<T1> is incompatible with List<T2>

Why?

List<String> stringList = new List<String> { "John", "Ann", "Bob" };
List<Object> objList = stringList; // not allowed -- but assume it were

objList[0] = 100; // ok for the compiler
String s = stringList[0]; // would retrieve an int as a string

Problem

objList[i] can be assigned a value (of any type)
=> stringList is not necessarily a list of strings any more

objList = stringList; can be allowed if objList is never modified
i.e., if values are only retrieved from objList but never added or modified

Solution

61 von 74School of Engineering © K. Rege, ZHAW

ObjectObject

Safe Co-Variant Generic Types

■ If a type parameter is only used in "output positions" it can be marked with out

interface Sequence<out T>
{
int Lengh { get; }
T this[int i] { get; }

} T is used in output position: only get but not set

This allows

Sequence<String> strings = ...;
Sequence<Object> objects;

objects = strings;

objects[i] will yield Objects which happen to be Strings
=> safe, because a objects cannot be modified

Co-variance

String

Sequence<Object>

Sequence<String>

if String is assignable to Object
then Sequence<String> is assignable to Sequence<Object>

62 von 74School of Engineering © K. Rege, ZHAW

IComparer<String>

Safe Contra-Variant Generic Types

■ If a type parameter is only used in "input positions" it can be marked with in

interface IComparer<in T> {
int Compare(T x, T y);

}
T is used in input position: only set but not get

Contra-variance

Object

String IComparer<Object>

if String is assignable to Object
then IComparable<Object>
is assignable to IComparable<String>

This allows

IComparer<Object> objComparer = ...;
IComparer<String> stringComparer;

stringComparer = objComparer;

int x = stringComparer.Compare("John", "Sue");
will call
objComparer.Compare(Object x, Object y)

=> safe because Strings are Objects

"John" "Sue"

63 von 74School of Engineering © K. Rege, ZHAW

Restrictions

■ Co/Contra-variance can only be used for interfaces and delegate types
Not for classes, because classes can have fields that can be read and written

■ interface I <out T> { ... }
- T can only be used as a return type (not as an out or ref parameter)

- Types that replace T must be reference types (not value types)
Sequence<int> cannot be assigned to Sequence<Object>

■ interface I<in T> { ... }

- Types that replace T must be reference types (not value types)
IComparer<int> cannot be assigned to IComparer<short>

64 von 74School of Engineering © K. Rege, ZHAW

Safe Co/Contra-Variance for Delegates

delegate TResult Func<in TArg, out TResult> (TArg val);

String HashCodeAsString(Object obj) {
return obj.GetHashCode().ToString();

}

Func<Object, String> f1 = HashCodeAsString;
String s = f1(new Person());

Func<String, Object> f2 = HashCodeAsString;
Object o = f2("Hello");

The following works as well

■ "Hello" is passed to obj 4
TArg is contra-variant: Func<String, ...> ⇐ Func<Object, ...>

■ The hash code as a String is returned as an Object 4
TResult is co-variant: Func<..., Object> ⇐ Func<..., String>

65 von 74School of Engineering © K. Rege, ZHAW

Co-variant Arrays vs. Co-variant Generics

Object[] objArr;
String[] strArr = ... ;

Object arrays

objArr = strArr;

objArr[i] = val;

run-time check whether the run-time type
of val is assignable to the run-time type
of the elements of objArr

interface Sequence<T> { ... }

Sequence<Object> objects;
Sequence<String> strings = ... ;

Generics

objects = strings;

But

interface Sequence<out T> { ... }

Sequence<Object> objects;
Sequence<String> strings = ... ;

objects = strings;

no run-time checks necessary
because objects cannot be modified

66 von 74School of Engineering © K. Rege, ZHAW

Another Summarizing Example

Person

name

interface IEnumerable<out T> { // in
System.Collections.Generic
IEnumerator<T> GetEnumerator();

}

interface IPrintable<in T> {
void Print(T val);

}

class PersonPrinter: IPrintable<Person> {...} //
prints name
class StudentPrinter: IPrintable<Student> {...} //
prints name, id
...

Student

id

MseStudent

advisor

void Process (IEnumerable<Student> students, IPrintable<Student> printer) { ... }

IEnumerable<MseStudent> IPrintable<Person>
can be
called with

prints the names
of all MSE students

co-variance contra-variance

safe because IEnumerable has <out T> IPrintable has <in T>

67 von 74School of Engineering © K. Rege, ZHAW

async & await

68 von 74School of Engineering © K. Rege, ZHAW

async & await

■ To simplify the writing of asynchronous methods

■ async: the method signature of an asynchronous includes an async modifier.
■ The name of an async method, by convention, ends with an "Async" suffix.

■ Task: The return Type is Task<T> or Task (if void method)

■ await: wait until async called method returns

async Task<int> fooAsync(){
 // e.g. call other async methods
 return 42;
}

async Task bar()
 Task fooTask = fooAsync();
 DoIndependentWork();
 int i = await fooTask ;

 DoDependentWork(i);
}

69 von 74School of Engineering © K. Rege, ZHAW

Applications

70 von 74School of Engineering © K. Rege, ZHAW

async & await example

async Task<int> AccessTheWebAsync()
{
 HttpClient client = new HttpClient();

 Task<string> getStrTask=client.GetStringAsync("http://msdn.microsoft.com");

 DoIndependentWork();

 string urlContents = await getStrTask;

 return urlContents.Length;
}

The method name ends in
"Async."

The method name ends in
"Async."

async modifierasync modifier

return type is Task or Task<T>return type is Task or Task<T>

Task<int> because the return
statement returns an integer.

Task<int> because the return
statement returns an integer.

do some independent work while waitingdo some independent work while waiting

call an async method internallycall an async method internally

wait until httpClient returns
content

wait until httpClient returns
content

71 von 74School of Engineering © K. Rege, ZHAW

async & await explained

72 von 74School of Engineering © K. Rege, ZHAW

… async & await explained

1. An event handler calls and awaits the AccessTheWebAsync async method.

2. AccessTheWebAsync creates an HttpClient instance and calls the GetStringAsync

asynchronous method to download the contents of a website as a string.

3. Something happens in GetStringAsync that suspends its progress. Perhaps it must wait for

a website to download or some other blocking activity. To avoid blocking resources,
GetStringAsync yields control to its caller, AccessTheWebAsync.

4 GetStringAsync returns a Task<TResult> where TResult is a string, and

AccessTheWebAsync assigns the task to the getStringTask variable. The task represents

the ongoing process for the call to GetStringAsync, with a commitment to produce an
actual string value when the work is complete.

5. Because getStringTask hasn't been awaited yet, AccessTheWebAsync can continue with

other work that doesn't depend on the final result from GetStringAsync. That work is

represented by a call to the synchronous method DoIndependentWork.

6. DoIndependentWork is a synchronous method that does its work and returns to its caller.

7. GetStringAsync completes and produces a string result. The string result isn't returned by
the call to GetStringAsync in the way that you might expect.

73 von 74School of Engineering © K. Rege, ZHAW

Conclusion .NET Technology

■ .NET programming languages allow for various programming styles
■ Language Syntax: C#, VB.NET, ...
■ Object Oriented Programming: Classes, Structs
■ Aspect Oriented Programming: Attributes, partial methods
■ Functional Programming: Delegates, Lambda Expressions
■ Static and Dynamic Typing: var, dynamic

■ The .NET Class Library is huge

■ The Visual Studio development environment is powerful but fills up to 3+ GB
and is increasingly complex to handle

■ Microsoft extends and changes the language, library and tools rapidly
■ may become frustrating
■ e.g. H.M. wont write another .NET Technology book because he simply has not the time to catch up

with MS frequency of changes

Development with .NET Technology is fun but challenging

74 von 74School of Engineering © K. Rege, ZHAW

Fragen ?

Selbstvertrauen!

