
RowFilter Syntax

When creating an expression, use the ColumnName property to refer to columns. For example, if the ColumnName
for one column is "UnitPrice", and another "Quantity", the expression would be:
"UnitPrice * Quantity"
When creating an expression for a filter, enclose strings with single quotes:
"LastName = 'Jones'"
The following characters are special characters and must be escaped, as explained below, if they are used in a
column name:
\n (newline)
\t (tab)
\r (carriage return)
~
(
)
#
\
/
=
>
<
+
-
*
%
&
|
^
'
"
[
]
If a column name contains one of the above characters, the name must be wrapped in brackets. For example to use a
column named "Column#" in an expression, you would write "[Column#]":
Total * [Column#]
Because brackets are special characters, you must use a slash ("\") to escape the bracket, if it is part of a column
name. For example, a column named "Column[]" would be written:
Total * [Column[\]]
(Only the second bracket must be escaped.)
USER-DEFINED VALUES
User-defined values may be used within expressions to be compared against column values. String values should be
enclosed within single quotes. Date values should be enclosed within pound signs (#). Decimals and scientific
notation are permissible for numeric values. For example:
"FirstName = 'John'"
"Price <= 50.00"
"Birthdate < #1/31/82#"
For columns that contain enumeration values, cast the value to an integer data type. For example:
"EnumColumn = 5"
OPERATORS
Concatenation is allowed using Boolean AND, OR, and NOT operators. You can use parentheses to group clauses
and force precedence. The AND operator has precedence over other operators. For example:
(LastName = 'Smith' OR LastName = 'Jones') AND FirstName = 'John'
When creating comparison expressions, the following operators are allowed:
<
>
<=
>=
<>
=
IN

LIKE
The following arithmetic operators are also supported in expressions:
+ (addition)
- (subtraction)
* (multiplication)
/ (division)
% (modulus)
STRING OPERATORS
To concatenate a string, use the + character. Whether string comparisons are case-sensitive or not is determined by
the value of the DataSet class's CaseSensitive property. However, you can override that value with the DataTable
class's CaseSensitive property.
WILDCARD CHARACTERS
Both the * and % can be used interchangeably for wildcards in a LIKE comparison. If the string in a LIKE clause
contains a * or %, those characters should be escaped in brackets ([]). If a bracket is in the clause, the bracket
characters should be escaped in brackets (for example [[] or []]). A wildcard is allowed at the beginning and end of a
pattern, or at the end of a pattern, or at the beginning of a pattern. For example:
"ItemName LIKE '*product*'"
"ItemName LIKE '*product'"
"ItemName LIKE 'product*'"
Wildcards are not allowed in the middle of a string. For example, 'te*xt' is not allowed.
PARENT/CHILD RELATION REFERENCING
A parent table may be referenced in an expression by prepending the column name with Parent. For example, the
Parent.Price references the parent table's column named Price.
A column in a child table may be referenced in an expression by prepending the column name with Child. However,
because child relationships may return multiple rows, you must include the reference to the child column in an
aggregate function. For example, Sum(Child.Price) would return the sum of the column named Price in the child
table.
If a table has more than one child, the syntax is: Child(RelationName). For example, if a table has two child tables
named Customers and Orders, and the DataRelation object is named Customers2Orders, the reference would be:
Avg(Child(Customers2Orders).Quantity)
AGGREGATES
The following aggregate types are supported:
Sum (Sum)
Avg (Average)
Min (Minimum)
Max (Maximum)
Count (Count)
StDev (Statistical standard deviation)
Var (Statistical variance).
Aggregates are usually performed along relationships. Create an aggregate expression by using one of the functions
listed above and a child table column as detailed in PARENT/CHILD RELATION REFERENCING above. For
example:
Avg(Child.Price)
Avg(Child(Orders2Details).Price)
An aggregate can also be performed on a single table. For example, to create a summary of figures in a column
named "Price":
Sum(Price)

Note If you use a single table to create an aggregate, there would be no group-by
functionality. Instead, all rows would display the same value in the column.

If a table has no rows, the aggregate functions will return a null reference (Nothing in Visual Basic).
Data types can always be determined by examining the DataType property of a column. You can also convert data
types using the Convert function, shown below.
FUNCTIONS
The following functions are also supported:
CONVERT

Description
Converts given expression to a specified .NET
Framework Type.

Syntax Convert(expression, type)

Arguments
expression-- The expression to convert.
type-- The .NET Framework type to which the value will

be converted.
Example: myDataColumn.Expression="Convert(total, 'System.Int32')"
All conversions are valid with the following exceptions: Boolean can be coerced to and from Byte, SByte, Int16,
Int32, Int64, UInt16, UInt32, UInt64, String and itself only. Char can be coerced to and from Int32, UInt32,
String, and itself only. DateTime can be coerced to and from String and itself only. TimeSpan can be coerced to
and from String and itself only.
LEN
Description Gets the length of a string
Syntax LEN(expression)
Arguments expression-- The string to be evaluated.
Example: myDataColumn.Expression="Len(ItemName)"
ISNULL

Description
Checks an expression and either returns the checked
expression or a replacement value.

Syntax ISNULL(expression, replacementvalue)

Arguments
expression-- The expression to check.
replacementvalue-- If expression is a null reference
(Nothing), replacementvalue is returned.

Example: myDataColumn.Expression="IsNull(price, -1)"
IIF

Description
Gets one of two values depending on the result of a
logical expression.

Syntax IIF(expr, truepart, falsepart)

Arguments
expr-- The expression to evaluate.
truepart-- The value to return if the expression is true.
falsepart-- The value to return if the expression is false.

Example: myDataColumn.Expression = "IIF(total>1000, 'expensive', 'dear')
TRIM

Description
Removes all leading and trailing blank characters
like\r,\n,\t, ' '

Syntax TRIM(expression)
Arguments expression-- The expression to trim.
SUBSTRING

Description
Gets a sub-string of a specified length, starting at a
specified point in the string.

Syntax
SUBSTRING(expression, start,
length)

Arguments
expression-- The source string for the substring.
start-- Integer that specifies where the substring begins.
length-- Integer that specifies the length of the substring.

Example: myDataColumn.Expression = "SUBSTRING(phone, 7, 8)"

Note You can reset the Expression property by assigning it a null value or empty string.
If a default value is set on the expression column, all previously filled rows are assigned
the default value after the Expression property is reset.

Example
[Visual Basic, C#, C++] The following example creates three coumns in a DataTable. The second and third columns
contain expressions; the second calculates tax using a variable tax rate, and the third adds the result of the
calculation to the value of the first column. The resulting table is displayed in a DataGrid control.

[C#]
private void CalcColumns(){
 DataColumn cPrice;
 DataColumn cTax;
 DataColumn cTotal;
 DataTable myTable = new DataTable ();

 // Create the first column.
 cPrice = new DataColumn();

 cPrice.DataType = System.Type.GetType("System.Decimal");
 cPrice.ColumnName = "price";
 cPrice.DefaultValue = 50;

 // Create the second, calculated, column.
 cTax = new DataColumn();
 cTax.DataType = System.Type.GetType("System.Decimal");
 cTax.ColumnName = "tax";
 cTax.Expression = "price * 0.0862";

 // Create third column.
 cTotal = new DataColumn();
 cTotal.DataType = System.Type.GetType("System.Decimal");
 cTotal.ColumnName = "total";
 cTotal.Expression = "price + tax";

 // Add columns to DataTable.
 myTable.Columns.Add(cPrice);
 myTable.Columns.Add(cTax);
 myTable.Columns.Add(cTotal);
 DataRow myRow;
 myRow = myTable.NewRow();
 myTable.Rows.Add(myRow);
 DataView myView = new DataView(myTable);
 dataGrid1.DataSource = myView;
 }

