
Smalltalk

Based on Lecture

Prof. O. Nierstrasz

and

Pharo Online ProfStef

Tutorial

2 von 98School of Engineering © K. Rege, ZHAW

Influence Language

https://techbeacon.com/app-dev-testing/how-learning-smalltalk-can-make-you-better-developer

3 von 98School of Engineering © K. Rege, ZHAW

Smalltalk vs. C++ vs. Java

Smalltalk C++ Java

Object model Pure Hybrid Hybrid

Garbage collection Automatic Manual Automatic

Inheritance Single Multiple Single

Types Dynamic Static Static

Reflection Fully reflective Introspection Introspection

Concurrency Semaphores,
Monitors

Some libraries Monitors

Modules Categories,
namespaces

Namespaces Packages

4 von 98School of Engineering © K. Rege, ZHAW

Scratch for LP 21

■ Was written originally in Smalltalk

■ Language/Environment is Pharo/Squeek alike but more colorful

5 von 98School of Engineering © K. Rege, ZHAW

History

6 von 98School of Engineering © K. Rege, ZHAW

History Xerox PARC Internal Development

■ 1972 — First Interpreter
■ by Alan Kay & Dan Ingalls

■ A bet of Ingalls, that he could do it within a few pages of code

■ 1976 — Redesign
■ hierarchy of:single root

■ fixed syntax

■ compacter bytecode,

■ processes

■ semaphores

■ object/class browsers

■ GUI library.

■ Projects: ThingLab, Visual Programming Environment

7 von 98School of Engineering © K. Rege, ZHAW

… History: Alan Kay's Dynabook Mockup

■ Alan Kay: 1973 visionered a small portable computer

■ At a time most computers looked like THIS !

Dynabook Mockup

8 von 98School of Engineering © K. Rege, ZHAW

… History: Alto a Machine to Run Smalltalk

■ Developed at the research center of Xerox in 1973

■ Alto the first Workstation/PC
■ Bit-mapped black and white display sized 606x808
■ as sheet of paper, aligned vertically
■ 5.8 MHz CPU.
■ 128KB of memory (at the cost of $4000)
■ 2.5MB removable cartridge hard drive.
■ Three button mouse.
■ 64-key keyboard and a 5-finger key set

■ Commercialized as Xerox Star: failed

WYSIWYGWYSIWYG

9 von 98School of Engineering © K. Rege, ZHAW

… History: Smalltalk Inventions

■ First to be based on Graphics
■ Multi-Windowing Environment (Overlapping Windows)

■ Integrated Development Environment: Debugger, Compiler, Text Editor, Browser

■ With a pointing device -> a Mouse

■ Platform-independent Virtual Machine
■ Just-in-time Compilation

■ Garbage Collector

■ Everything was there, the complete Source Code

10 von 98School of Engineering © K. Rege, ZHAW

… History: Xerox PARC Inventions

■ Laser printers

■ Computer-generated bitmap graphics

■ The graphical user interface,

featuring windows and icons, operated
with a mouse

■ The WYSIWYG text editor

■ Interpress, a resolution-independent graphical page-description language and
the precursor to PostScript

■ Ethernet as a local-area computer network

■ Fully formed object-oriented programming (with class-based inheritance).

■ Model–view–controller software architecture

Xerox PARC Researchers were very bright and open to share ideas

And Xerox managers
didn't understand them

And Xerox managers
didn't understand them

11 von 98School of Engineering © K. Rege, ZHAW

… History: Xerox PARC Inventions

■ Steve Jobs and Bill Gates have visited Xerox PARC
■ and both have been fascinated by GUI

■ Jobs accused Microsoft later they
have stolen the GUI concept

from Apple
You have stolen the
GUI concept from us

You have stolen the
GUI concept from us

Well, Steve, I think there's more than
one way of looking at it. I think it's more
like we both had this rich neighbor
named Xerox and I broke into his
house to steal the TV set and found out
that you had already stolen it.

Well, Steve, I think there's more than
one way of looking at it. I think it's more
like we both had this rich neighbor
named Xerox and I broke into his
house to steal the TV set and found out
that you had already stolen it.

12 von 98School of Engineering © K. Rege, ZHAW

… History: Xerox PARC Inventions

Objects, Garbage Collection, Byte Code, etc…

IDE/Eclipse

Bit Blitting

Overlapping
Windows

Model-View-Controller

Design Patterns

Refactoring Browser

Unit Testing

Garbage Collection

Extreme programming

JIT compilation

1st Apple Prototype

Java, Self, JavaScript
1st wiki community

13 von 98School of Engineering © K. Rege, ZHAW

… History: And some name dropping

■ Alan Kay
■ Smalltalk Inventor, Vision of a portable computer

■ Dan Ingalls
■ Smalltalk Inventor

■ Adele Goldberg
■ Smalltalk Inventor and writer of the 4 books

■ Kent Beck
■ Founder of Extreme and Agile Development Initiative

■ Ward Cunningham
■ Wiki ("The Wiki Way") and Agile Development Initiative

■ Erich Gamma
■ Design Patterns & Eclipse

■ Martin Fowler
■ Design Pattern & Software Development Methodology

14 von 98School of Engineering © K. Rege, ZHAW

… History: August 1981 Byte Magazine

■ Byte Magazine issue in August 1981
■ Completely devoted to the Smalltalk-80
■ Article was written by Dan Ingalls and entitled

"Design Principles Behind Smalltalk".
■ It provides an overview of the core ideas of

Smalltalk.

■ This article is still considered required

reading for anyone new to Smalltalk.

■ The cover of Byte Magazine shows a
multi-colored balloon leaving the ivory

tower of Xerox labs.

■ Byte Magazine:
■ Most important computer Magazine at that time
■ Monthly edition up to 420'000 copies
■ Up to 1000 pages thick

https://archive.org/details/byte-magazine-1981-08

15 von 98School of Engineering © K. Rege, ZHAW

… History: The History outside Xerox PARC

■ 1980 — Smalltalk-80
■ ASCII, cleaning primitives for portability, metaclasses, blocks as first-class objects, MVC.
■ Projects: Gallery Editor (mixing text, painting and animations) + Alternate Reality Kit (physics

simulation)

■ 1981 — Books + 4 external virtual machines
■ Dec, Apple, HP and Tektronix
■ GC by generation scavenging

■ 1988 — Creation of Parc Place Systems

■ 1992 — ANSI Draft

■ 1995 — New Smalltalk implementations
■ Dolphin, Squeak, Smalltalk/X, GNU Smalltalk

■ 2002 — Seaside Smalltalk based Web Framework

■ 2008 — Pharo fork of Squeak
■ clean up libraries
■ apply MIT Free software license

16 von 98School of Engineering © K. Rege, ZHAW

Smalltalk Environment

17 von 98School of Engineering © K. Rege, ZHAW

What is the "Smalltalk Environment"

Smalltalk is a consistent, uniform world, written in itself

■ All the source code is there all the time

■ You can't lose code
■ except when environment crashes

■ You can change everything

Everything is an object or a message

Everything happens by sending messages to objects

18 von 98School of Engineering © K. Rege, ZHAW

… Everything is an Object or a Message

■ The workspace is an object.

■ The window is an instance of SystemWindow.

■ The text editor is an instance of ParagraphEditor.

■ 'hello word' is an instance of String.

■ The mouse is an object.

■ The parser is an instance of Parser.

■ The compiler is an instance of Compiler.

■ The process scheduler is also an object.

 All the code is available, readable and changeable at runtime.

19 von 98School of Engineering © K. Rege, ZHAW

Hello World

To evaluate an expression, right
mouse button apply doIt.

To evaluate an expression, right
mouse button apply doIt.

11

22

Left mouse button in
the World to open a
Playground

Left mouse button in
the World to open a
Playground

■ We can dynamically ask the system to evaluate an expression.

■ Transcript is a kind of “standard output”

20 von 98School of Engineering © K. Rege, ZHAW

Environment

■ Every object understands the message 'explore'. As a result, you get an Explorer

window that shows details about the object."

■ Date today explore.

■ This shows that the date object consists

of a point in time (start) and a duration
(one day long).

21 von 98School of Engineering © K. Rege, ZHAW

The Smalltalk System Browser & Editor
left click on
the World

left click on
the World

packages
= object
categorie

packages
= object
categorie

information e.g.
method
implementation

information e.g.
method
implementation

enter name to
find it

enter name to
find it

classes &
instances

classes &
instances

protocols
method categery

protocols
method categery

methods
selectors

methods
selectors

click to toggle
class/object view

click to toggle
class/object view

22 von 98School of Engineering © K. Rege, ZHAW

… the Smalltalk System Browser & Editor

■ Every class/object in the Smalltalk system can be inspected and changed (!)

23 von 98School of Engineering © K. Rege, ZHAW

… the Smalltalk System Browser & Editor

■ A class defines the structure of its instances i.e. object
■ i.e. instance variables and methods.

■ Instance side and the class side
■ Classes are objects too, and every object is an instance of a class
■ Since classes are objects

■ can have their own "instance variables" and their own methods.
■ these are called class variables and class methods,

■ class variables/methods are just instance variables/methods defined by a metaclass
■ A class and its metaclass are two separate classes, even though the former is an instance of the

latter.

http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html

JavaScript PrototypeJavaScript Prototype

24 von 98School of Engineering © K. Rege, ZHAW

The Smalltalk Object Model

http://pharo.gforge.inria.fr/PBE1/PBE1ch14.html

"Class": Methods defined
here are accessible on
object level/view

Object

"Metaclass": Methods defined
here are accessible on
class level/view

Lookup: Methods are
looked up along inheritance
hierarchy

classes are objects too

http://swing.fit.cvut.cz/projects/stx/doc/online/english/programming/doingThingsInST.html

newnew
classclass

http://esug.org/data/Old/ibm/tutorial/

superclasssuperclass

subclass:subclass:

classclass

as understood e.g. in Javaas understood e.g. in Java

JavaScript

newnew

25 von 98School of Engineering © K. Rege, ZHAW

Navigate and Construct at runtime

■ c := Color new.

■ c class. Color

■ Color class. Color class

■ Color class class. Metaclass

■ Color superclass. Object

■ Color subclass: #TranslucentColor2.

■ TranslucentColor2 superclass. Color

■ TranslucentColor2 compile:'hello Transcript show: ''hello''.'.

■ TranslucentColor2 compile:'hello2: arg Transcript show: arg.'.

■ t := TranslucentColor2 new.

■ t hello. hello

■ t hello2: 'hugo'. hugo

https://live.exept.de/doc/online/english/programming/doingThingsInST.html

26 von 98School of Engineering © K. Rege, ZHAW

album play

album playTrack: 1

album playFromTrack: 5 to: 10

album play

album playTrack: 1

album playFromTrack: 5 to: 10

object.object. message.message.
message with
argument.

message with
argument.

Natural Language "Alike"

27 von 98School of Engineering © K. Rege, ZHAW

Accept, DoIt, PrintIt and InspectIt

■ There is a context menu for selected strings

■ DoIt
■ Evaluate an expression

■ PrintIt
■ Evaluate an expression and print the result

■ InspectIt
■ Open in Object Explorer

28 von 98School of Engineering © K. Rege, ZHAW

Persistent Object Memory

■ Smalltalk is language and environment

■ Everything inside the image (workspace)
■ persistent objects
■ fully reflective system
■ incremental compilation

https://itnext.io/javascript-vs-pharo-d4fbf15578ee?gi=71920fe27043
"JavaScript is a catastrophe of language design.
JavaScript is riddled with dark corners, traps and pitfalls. "

https://thenewstack.io/brendan-eich-on-creating-javascript-in-10-days-and-what-hed-do-differently-today/

29 von 98School of Engineering © K. Rege, ZHAW

Save & Load Single Classes

■ To save in System Browser

■ -> "File out"

■ load a class: in World -> Tools -> FileBrowser "Install into ChangeSet"

30 von 98School of Engineering © K. Rege, ZHAW

The Language

31 von 98School of Engineering © K. Rege, ZHAW

Objects in Smalltalk

■ Everything is an object
■ Things only happen by message passing
■ Variables are dynamically typed
■ classes are also objects;

■ the "class" is a metaobject that is constructed automatically when a class

■ State is private to objects
■ “protected” for subclasses

■ (All) Methods are public
■ “private” methods by convention only

■ (Nearly) every object is a reference
■ Unused objects are garbage-collected

■ Single inheritance

32 von 98School of Engineering © K. Rege, ZHAW

Doing vs Printing

■ DoIt
■ execute the expression

■ PrintIt It's value
■ Do It which prints the result next to the expression you've selected.(#printOn:)

■ 1 + 2. 3

■ Date today. 13 March 2013

■ Time now. 11:42:23.487 am

■ SmalltalkImage current datedVersion. ' Pharo1.4 of 18 April 2012'

PrintIt.PrintIt.

33 von 98School of Engineering © K. Rege, ZHAW

Numbers, Characters, Strings and Symbols

34 von 98School of Engineering © K. Rege, ZHAW

Basic Types: Numbers

■ 1, 2, 100, 2/3 ... are Numbers, and respond to many messages evaluating

mathematical expressions. Evaluate these ones:

Examples
2. 2

20 factorial. 2432902008176640000

1000 factorial / 999 factorial. 1000

(1/3). (1/3)

(1/3) + (4/5). (17/15)

(1/3) asFloat. 0.3333333333333333

1 class maxVal. 1073741823

35 von 98School of Engineering © K. Rege, ZHAW

Try this in Java!

402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404
800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779
505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012
476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207
379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281
231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261
683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909
342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945
160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034
352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223
838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779
911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210
465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327
168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860
788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084
024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346
962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886
018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960
798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281
434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506
217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909
959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998
094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909
004153690105933983835777939410970027753472000
000
000

1000 factorial

36 von 98School of Engineering © K. Rege, ZHAW

Automatic Coercion

1 + 2.3

1 class

1 class maxVal class

(1 class maxVal + 1) class

(1/3) + (2/3)

1000 factorial / 999 factorial

2/3 + 1

(1/3) class.

3.3

SmallInteger

SmallInteger

LargePositiveInteger

1

1000

(5/3)

Fraction

■ On demand numeric types are coerced automatically

37 von 98School of Engineering © K. Rege, ZHAW

Explicit Coercion

■ Types can also be converted explicitly

d := i asFloat.

i := d asInteger.

i := d truncated.

i := d rounded.

s := i asString.

38 von 98School of Engineering © K. Rege, ZHAW

Numbers

■ Object hierarchie of numerical types

39 von 98School of Engineering © K. Rege, ZHAW

Basic Types: Characters

■ A Character can be instantiated using $ operator:

Examples

$A. $A

$A class. Character

$B charCode. 66

print all 256 characters of the ASCII extended set:"

Character allByteCharacters.

'!"#$%&''()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`

abcdefghijklmnopqrstuvwxyz{|}~�?�???????????�?��????????????�?? ¡¢
£¤¥¦§¨©ª«¬-®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãä

åæçèéêëìíîïðñòóôõö÷øùúûüýþÿ'

40 von 98School of Engineering © K. Rege, ZHAW

Unprintable Characters

■ Unprintable characters:

Character space

Character tab

Character cr

10 asCharacter

41 von 98School of Engineering © K. Rege, ZHAW

Basic Types Strings

■ A String is a collection of characters.

■ Single quotes to create a String object.

Examples

'ProfStef'. 'ProfStef'

'ProfStef' size. 8

'abc' asUppercase. 'ABC'

'Hello World' reverse. 'dlroW olleH'

You can access each character using at: message

'ProfStef' at: 1. $P

String concatenation uses the comma operator:

'ProfStef', ' is cool'. 'ProfStef is cool'

String concatenation.String concatenation.

42 von 98School of Engineering © K. Rege, ZHAW

Strings

Strings are mutable

s := 'Hello World'.

s at: 4 put: $L. 'HelLo World'

12 printString

String with: $A

'can''t' at: 4

'hello', ' ', 'world'

'12'

'A'

 $'

'hello world'

43 von 98School of Engineering © K. Rege, ZHAW

Basic Types Symbols, Comparison

■ A Symbol is a String which is guaranteed to be globally unique.

■ There is one and only one Symbol #ProfStef. There may be several 'ProfStef'

String objects.

■ Message == returns true if the two strings are the SAME OBJECT

■ Message = returns true if the strings are EQUAL

Examples

'ProfStef' asSymbol. #ProfStef

#ProfStef asString. 'ProfStef'

(2 asString) == (2 asString). false

(2 asString) asSymbol == (2 asString) asSymbol. true

44 von 98School of Engineering © K. Rege, ZHAW

Symbols vs. Strings

■ Symbols are used as method selectors and unique keys for dictionaries
■ Symbols are read-only objects, strings are mutable
■ A symbol is unique, strings are not
■ Symbol operations are faster than String operations
■ Conversion of a String to a Symbol is expensive

'calvin' = 'calvin'
'calvin' == 'calvin'
'cal','vin' = 'calvin'
'cal','vin' == 'calvin'

#calvin = #calvin
#calvin == #calvin
#cal,#vin = #calvin
#cal,#vin == #calvin
#cal,#vin
(#cal,#vin) asSymbol == #calvin

true
true
true
false

true
true
true
false
'calvin'
true

!

45 von 98School of Engineering © K. Rege, ZHAW

Identity vs. Equality

■ = tests Object value
■ Should normally be overridden

■ Default implementation is == !
■ You should override hash too!

■ == tests Object identity
■ Should never be overridden

46 von 98School of Engineering © K. Rege, ZHAW

Strings

47 von 98School of Engineering © K. Rege, ZHAW

Comments

■ Comments are simply enclosured in ""

Examples

■ "This is a Smalltalk comment"

48 von 98School of Engineering © K. Rege, ZHAW

Arrays

49 von 98School of Engineering © K. Rege, ZHAW

Basic Type: Array

■ Literal arrays are created at parse time

Examples

#(1 2 3). #(1 2 3)

#(1 2 3 #(4 5 6)) size. 4

#(1 2 4) isEmpty. false

#(1 2 3) first. 1

■ Arrays are mutable

#('hello' 'Squeak') at: 2 put: 'Pharo'; yourself. #('hello' 'Pharo')

■ Array Index start at 1 !!!

50 von 98School of Engineering © K. Rege, ZHAW

Dynamic Arrays

■ create array with up to 4 elements

x := Array with: 5 with: 4 with: 3 with: 2.

■ allocate an array with specified size

x := Array new: 4.

set array elements

x

 at: 1 put: 5;

 at: 2 put: 4;

 at: 3 put: 3;

 at: 4 put: 2.

51 von 98School of Engineering © K. Rege, ZHAW

Boolean

52 von 98School of Engineering © K. Rege, ZHAW

True

True>>ifTrue: trueBlock ifFalse: falseBlock
"Answer with the value of trueBlock.
Execution does not actually reach here
because the expression is compiled in-line."

^ trueBlock value

■ True (and False) are special classes in Smalltalk

■ The result of a comparison is an Object of this kind

■ (3 > 2) class. True

■ They understand ifTrue and ifFalse messages
■ The following Block is compiled inline and executed

■ (3 > 2) ifTrue: [Transcript show: 'hello']

■ not and & without lazy evaluations

53 von 98School of Engineering © K. Rege, ZHAW

true and false

■ true and false are unique instances (singletons) of True and False
■ Optimized and inlined

■ Lazy evaluation with and: and or:

false and: [1/0] false

false & (1/0) ZeroDivide error!

Block that is
evaluated lazy

Block that is
evaluated lazy

54 von 98School of Engineering © K. Rege, ZHAW

Booleans

55 von 98School of Engineering © K. Rege, ZHAW

Variables

56 von 98School of Engineering © K. Rege, ZHAW

Local Variables

■ Declare local variables with | … |

■ only name required

■ Use := to assign a value to a variable

■ Old fashioned assignment operator (in original Books): ←

| x y |

x := 1

57 von 98School of Engineering © K. Rege, ZHAW

Assignment

■ Assignment binds a name to an object reference

■ Method arguments cannot be assigned to!
■ Use a temporary instead

■ Different names can point to the same object!
■ Assignment only copies references
■ Watch out for unintended side effects

|p1 p2|
p1 := 3@4.
p2 := p1.
p1 setX: 5 setY: 6.
p2 5@6

PointPoint

58 von 98School of Engineering © K. Rege, ZHAW

Variables

■ A variable maintains a reference to an object
■ Dynamically typed
■ Can reference different types of objects
■ Shared (initial uppercase) or local (initial lowercase)

variable

Shared variable

Pool variable

Global variable

private variable

named

temporary variableinstance variable

indexed

| block temporary || method temporary |

Class variable

method parameter : block parameter

59 von 98School of Engineering © K. Rege, ZHAW

nil A reference to the UndefinedObject

true Singleton instance of the class True

false Singleton instance of the class False

self
Reference to this object
Method lookup starts from object’s class

super
Reference to this object (!)
Method lookup starts from the superclass

Pseudo-Variables

■ The following pseudo-variables are hard-wired into the Smalltalk compiler.

60 von 98School of Engineering © K. Rege, ZHAW

Messages

61 von 98School of Engineering © K. Rege, ZHAW

Message Syntax: Unary Messages

■ Messages are sent to objects.

■ Are also called Selectors

■ There are three types of message: Unary, Binary and Keyword.

■ Unary messages have the following form: anObject aMessage

Examples
1 class. SmallInteger

false not. true

Time now. 1:05:49.375 pm

Date today. 13 March 2013

Float pi. 3.141592653589793

62 von 98School of Engineering © K. Rege, ZHAW

Message Syntax: Binary Messages

■ Binary messages have the form: anObject + anotherObject

Examples

3 * 2. 6

Date today + 3 weeks. 3 April 2013

false | false. false

true & true. true

true & false. false

10 @ 100. (10@100)

10 <= 12. true

'ab', 'cd'. 'abcd'

Date today < Date yesterday. false

PointPoint

63 von 98School of Engineering © K. Rege, ZHAW

Message Syntax: Keyword Messages

■ Keyword Messages are messages with arguments

■ They have the following form:

 anObject akey: anotherObject [akey2: anotherObject2]

Examples

1 max: 3. 3

4 between: 0 and: 10. true

Point new setX:4 setY:5. (4@5)

Color r:1 g:0 b:0. Color red

Color

r:1

g:1

b:0. Color yellow

The message is
between:and: sent
to the Number 4

The message is
between:and: sent
to the Number 4

"The message is r:g:b:
implemented on class
Color.

"The message is r:g:b:
implemented on class
Color.

64 von 98School of Engineering © K. Rege, ZHAW

Message Syntax: Execution Order

■ Unary messages are executed first, then binary messages and finally keyword

messages:

Unary > Binary > Keywords

2 + 3 squared. 11

2 raisedTo: 3 + 2. 32 !!

(0@0) class. Point

0@0 corner: 100@200. (0@0) corner: (100@200)

(0@0 corner: 100@200) class. Rectangle

■ Messages of similar precedence, expressions are executed from left to right

-3 abs negated reciprocal. (-1/3)

65 von 98School of Engineering © K. Rege, ZHAW

Message Syntax: Parentheses

■ Parentheses are used to change order of evaluation

(2 + 3) squared. 25

(2 raisedTo: 3) + 2. 10

(0@0 extent: 100@200) bottomRight. (100@200)

66 von 98School of Engineering © K. Rege, ZHAW

Mathematical Precedence

■ Traditional precedence rules from mathematics do not follow in Smalltalk.

2 * 10 + 2. 22

■ The message * is sent to 2, which answers 20, then 20 receive the message +

■ All messages always follow a simple left-to-right precedence rule, without

exceptions !.

2 + 2 * 10. 40

2 + (2 * 10). 22

8 - 5 / 2. (3/2)

(8 - 5) / 2. (3/2)

8 - (5 / 2). (11/2)

67 von 98School of Engineering © K. Rege, ZHAW

Message Call Syntax: Cascade

■ ; is the cascade operator. It's useful to send message to the SAME receiver

■ Open a Transcript (console):

Transcript open.

Transcript show: 'hello'.

Transcript show: 'Smalltalk'.

Transcript cr.

■ is equivalent to:

Transcript

 show: 'hello';

 show: 'Smalltalk';

 cr.

use . to separate
expressions

use . to separate
expressions

68 von 98School of Engineering © K. Rege, ZHAW

Message Call Syntax: Cascade variants

■ cascade message to the result of the message

■ Use periods to separate expressions

■ Use semi-colons to send a cascade of messages to the same object

Transcript cr; show: 'hello world'; cr

Transcript cr.

Transcript show: 'hello world’.

Transcript cr "NB: don’t need one here"

1 class maxVal. 1073741823

69 von 98School of Engineering © K. Rege, ZHAW

Blocks

70 von 98School of Engineering © K. Rege, ZHAW

Blocks

■ Blocks are anonymous methods that can be stored into variables and executed

on demand.

■ Blocks are delimited by square brackets: []

Examples
[Transcript show: 'Hello'].

■ does nothing because block is not executed.

[Transcript show: 'Hello'] value

■ Blocks can have parameters :x

■ A block that adds 2 to its argument (its argument is named x):

[:x | x+2].

[:x | x+2] value: 5. 7

[:x | x+2] value: 10. 12

[:x :y| x + y] value:3 value:5. 8.

executing block
nothing happens

executing block
nothing happens

71 von 98School of Engineering © K. Rege, ZHAW

Block Assignation

■ Blocks can be assigned to a variable then executed later.

■ Note that |b| is the declaration of a variable named 'b' and that ':=' assigns a

value to a variable.

|b|

b := [:x | x+2].

b value: 12.

14

72 von 98School of Engineering © K. Rege, ZHAW

Conditionals and Loops

73 von 98School of Engineering © K. Rege, ZHAW

Conditionals

■ Conditionals are messages sent to Boolean objects

Examples

1 < 2

 ifTrue: [100]

 ifFalse: [42]. 100

3 > 10

ifTrue: [Transcript show: 'maybe there''s a bug']

ifFalse: [Transcript show: 'No : 3 is less than 10'].

inserts ' in Stringinserts ' in String

74 von 98School of Engineering © K. Rege, ZHAW

For Loops

■ Loops are high-level collection iterators, implemented as regular methods.

■ Basic loops:

■ to:do:

■ to:by:do:

Examples

1 to: 100 do:

 [:i | Transcript show: i asString; cr].

1 to: 100 by: 3 do: [:i | Transcript show: i asString; cr].

100 to: 0 by: -2 do:

 [:i | Transcript show: i asString; cr].

75 von 98School of Engineering © K. Rege, ZHAW

While Loop

■ Conditional expression must be in brackets here (unlike “if”)

■ for the reason that it must be re-evaluated each time around the loop.

Example

[i < 100] whileTrue: [

sum := sum + i.

i := i + 1

]

76 von 98School of Engineering © K. Rege, ZHAW

Iterators

■ The message do: is sent to a collection of objects (Array, Set,

OrderedCollection), evaluating the block for each element.

#(11 38 3 -2 10) do: [:each |

 Transcript show: each printString; cr].

#(11 38 3 -2 10) collect: [:each | each abs]. #(11 38 3 2 10)

#(11 38 3 -2 10) collect: [:each | each odd]. #(true false true

false false)

#(11 38 3 -2 10) select: [:each | each odd]. #(11 3)

#(11 38 3 -2 10) select: [:each | each > 10]. #(11 38)

#(11 38 3 -2 10) reject: [:each | each > 10]. #(3 -2 10)

#(11 38 3 -2 10) do: [:each | Transcript show: each printString]

 separatedBy: [Transcript show: '.'].

77 von 98School of Engineering © K. Rege, ZHAW

Objects and Classes

78 von 98School of Engineering © K. Rege, ZHAW

Instantiation

SimpleButtonMorph new

■ creates (and returns) a new instance of the MessagePublisher class.

■ This is typically assigned to a variable:

button := SimpleButtonMorph new

■ However, it is also possible to send a message to a temporary, anonymous
object:

SimpleButtonMorph new openCenteredInWorld.

79 von 98School of Engineering © K. Rege, ZHAW

Instantiation

■ The message #allInstances sent to a class delivers an Array with all instances of

this class.
■ SimpleButtonMorph allInstances size.

■ After new the initial values can be set and methods can be invoked

■ SimpleButtonMorph new

label: 'Open Transcript';

target: [Transcript open.];

actionSelector: #value;

openCenteredInWorld.

■ Change its label

SimpleButtonMorph allInstances last label: 'hello'

■ Delete the Button

SimpleButtonMorph allInstances last delete.

create a new instance of a
Button

create a new instance of a
Button

How many instances of
SimpleButtonMorph exist

How many instances of
SimpleButtonMorph exist

and open itand open it

command to be
executed

command to be
executed

80 von 98School of Engineering © K. Rege, ZHAW

Define new Classes

Send a #subclass Message to Class that should be inherited from

Object subclass: #HelloMessage

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Hello'!

Number subclass: #Complex

instanceVariableNames: 'real img'

classVariableNames: ''

poolDictionaries: ''

category: 'ComplexNumbers'

names of the
instance variables

names of the
instance variables

name of the new
class

name of the new
class

category of the classcategory of the class

81 von 98School of Engineering © K. Rege, ZHAW

Define new Classes via System Browser

Beliebige Klasse Auswählen
und KlassenNamen und
category setzen

Beliebige Klasse Auswählen
und KlassenNamen und
category setzen

HelloMessage
ctrl-s to save

HelloMessage
ctrl-s to save

82 von 98School of Engineering © K. Rege, ZHAW

Add Instance Message in new Msg Category

■ Excecute it

select
change implementation
right click to rename

select
change implementation
right click to rename

instance Method thus newinstance Method thus new edit implementation
ctrl-s to save

edit implementation
ctrl-s to save

click on class to get instance
methods

click on class to get instance
methods

83 von 98School of Engineering © K. Rege, ZHAW

Instance Variables

■ Are declared in the class definition (no type)

instanceVariableNames: 'real img'

■ Instance variables are private to the instance itself

■ Instance variables can be accessed by name
■ In any of the instance methods of the class that defines them,
■ In the methods defined in its subclasses.

■ There is no language syntax that provides direct access to the instance variables
 of any other object.

■ To access them "accessor methods" have to be defined.

Complex >> real

^real

Complex >> real: val

real:=val

>> indicates real is method of
Complex; not part of Smalltalk
Syntax but used in external text
formats

>> indicates real is method of
Complex; not part of Smalltalk
Syntax but used in external text
formats

^ = "return"^ = "return"

84 von 98School of Engineering © K. Rege, ZHAW

Message and Variables

■ Local variables within methods (or blocks) are delimited by |var|

■ Block parameters are delimited by :var|

OrderedCollection >> collect: aBlock

"Evaluate aBlock with each of my elements as the argument."

| newCollection |

newCollection := self species new: self size.

firstIndex to: lastIndex do:

[:index |

newCollection addLast: (aBlock value: (array at: index))].

^ newCollection

[:n | x := n+1. y := n-1. x * y] value: 10 99

x and y are instance or method
scoped variables

x and y are instance or method
scoped variables

85 von 98School of Engineering © K. Rege, ZHAW

Return Value of Messages

■ Use a caret (^) to return a value from a method or a block

■ Methods always return a value
■ By default, methods return self

max: aNumber

^ self < aNumber

ifTrue: [aNumber]

ifFalse: [self] 1 max: 2 2

86 von 98School of Engineering © K. Rege, ZHAW

Return Value of Messages Examples

■ Example
Point >> dist: aPoint

 "Answer the distance between aPoint and the receiver."

 | dx dy |

 dx := aPoint x - x.

 dy := aPoint y - y.

 ^ ((dx * dx) + (dy * dy)) sqrt

Complex >> + aComplex

| nComplex |

nComplex := Complex new.

nComplex real: (self real + aComplex real).

nComplex img: (self img + aComplex img).

^ nComplex

87 von 98School of Engineering © K. Rege, ZHAW

Object Instance Methods

■ Every Object supports following messages (and more)

■ class returns the receiver class

■ isKindOf: aClass whether aClass is a superclass of the receiver

■ respondsTo: aSymbol whether the class or its superclasses understands

the message

■ == comparison of two objects

■ = comparison of two object values

■ isNil test if object is nil

■ copy copy of an Object

■ shallowCopy a shallow copy of the object

■ deepCopy a deep copy of the object

88 von 98School of Engineering © K. Rege, ZHAW

Answering on Print Message

■ Answering PrintOn Message

■ Send #PrintString to an object to convert it to string using PrintOn

Complex >> printOn: aStream

aStream nextPutAll: 'real:'.

real printOn: aStream.

aStream nextPutAll: ' img:'.

img printOn: aStream.

89 von 98School of Engineering © K. Rege, ZHAW

Examples

90 von 98School of Engineering © K. Rege, ZHAW

Slow Fibonacci

Fibs >> at: anIndex
anIndex = 1 ifTrue: [^ 1].
anIndex = 2 ifTrue: [^ 1].
^ (self at: anIndex - 1) + (self at: anIndex - 2)

Fibs new at: 35 9227465

Takes 8 seconds.
Forget about larger values!

■ Recursive Method

91 von 98School of Engineering © K. Rege, ZHAW

Caching Fibonacci

Object subclass: #Fibs
instanceVariableNames: 'fibCache'
classVariableNames: ''
poolDictionaries: ''
category: 'Misc'

Fibs >> initialize
fibCache := Dictionary new

Fibs >> fibCache
^ fibCache

■ A Dictionary to cache values

called automatically
when new instance
created

called automatically
when new instance
created

92 von 98School of Engineering © K. Rege, ZHAW

■ Now we introduce the lookup method, and redirect all accesses to use the cache

lookup

Caching Fibonacci

Fibs >> lookup: anIndex
^ self fibCache at: anIndex ifAbsentPut: [self at: anIndex]

Fibs >> at: anIndex
anIndex = 1 ifTrue: [^ 1].
anIndex = 2 ifTrue: [^ 1].
^ (self lookup: anIndex - 1) + (self lookup: anIndex - 2)

Fibs new at: 100 354224848179261915075

… is virtually instantaneous!

93 von 98School of Engineering © K. Rege, ZHAW

Conclusion

■ Smalltalk is a unique Language and Environment

■ The Language
■ "Purely" Object Oriented
■ Based on a small set of concepts
■ Has influenced most modern OO programming languages (Java, C#)
■ Basis of Scratch

■ The System
■ Concept of a open and arbitrary modifiable Workspace

■ Everything can be inspected
■ Everything can be changed

■ Despite its age there is an actual and living community that maintains it

94 von 98School of Engineering © K. Rege, ZHAW

Questions

95 von 98School of Engineering © K. Rege, ZHAW

Attribution-ShareAlike 3.0 Unported
You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

License

http://creativecommons.org/licenses/by-sa/3.0/

96 von 98School of Engineering © K. Rege, ZHAW

A Simple Drawing Canvas

Morph subclass: #CanvasMorph

 instanceVariableNames:

'drawBlock'

 classVariableNames: ''

 poolDictionaries: ''

 category: 'ZHAW'

>> initialize

 super initialize.

 self color: Color white.

 self extent: 400@400.

>> drawBlock: aBlock

 drawBlock := aBlock.

 self changed.

>> drawOn: aCanvas

 super drawOn: aCanvas.

 drawBlock ifNotNil: [

 aCanvas

 translateBy: self
bounds origin

 clippingTo: self bounds

 during: [:canvas |

drawBlock value: canvas]]

 use in Workspace
m := CanvasMorph new.

m openInWindowLabeled: 'Hallo'.

m drawBlock: [....]

m delete.

"repaint""repaint"

closeclose

"paint""paint"

"Graphics""Graphics"

openopen

called automatically
when new instance
created

called automatically
when new instance
created

graphic
passed as
block

graphic
passed as
block

97 von 98School of Engineering © K. Rege, ZHAW

Drawing Samples

■ some sample Canvas Drawing
m drawBlock: [:c |

 c line: 10@10 to: 100@100 color: Color red.

c frameOval: (50@50 extent: 20@20) color: Color red.

c fillOval: (10@10 extent: 20@20) color: Color red.

c frameRectangle: (60@60 extent: 30@30) color: (Color r:0.8 g:0 b:0).

c fillRectangle: (20@20 extent: 30@30) color: Color blue.

c drawString: 'Hello World' at: 100@100.

]

■ draw 100 Random Crosses
m drawBlock: [:c |

rand := Random new.

1 to: 100 do: [: i |

x := (rand next * 100).

y := (rand next * 100).

c line: (x-1)@y to: (x+1)@y color: Color red.

c line: x@(y-1) to: x@(y+1) color: Color red.

]

]

draw a linedraw a line

98 von 98School of Engineering © K. Rege, ZHAW

Stack Implemented as Array

Object subclass: #Stack

 instanceVariableNames:

 'anArray top '

 classVariableNames: ''

 poolDictionaries: '' !

!Stack class methods !

new

 | s |

 s := super new.

 s setsize: 10.

 ^s !!

!Stack methods !

pop
 | item |
 item := anArray at: top.
 top := top - 1.
 ^item!

printOn: aStream
 aStream nextPutAll: 'Stack['.
 1 to: top do: [:i | (anArray

at: i) printOn: aStream.
aStream space].

 aStream nextPutAll: ']'!

push: item
 top := top + 1.
 anArray at: top put: item!

setsize: n
 anArray := Array new: n.
 top := 0

