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= History of Programming Languages
= The very first Language: FORTRAN



Organisation des Kurses Zh

aw Engineering

m 2 Lektionen Vorlesung

m 2 Lektionen Praktikum

m Unterlagen unter
= https://radar.zhaw.ch/~rege

m undin MOODLE unter PSPP

= https://moodle.zhaw.ch/

m undin MS Teams

. : :
LelswngsnaChwels Handbuch Programmiersprachen
= Praktika von Peter Henning
= Abgabe 20%

= Semesterendpriufung
= Voraussichtlich Moodle
= Hilfsmittel: Open Book
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Semesterplan

Themen

Die Studierenden kennen die wichtigsten Programmiersprachen und die ihnen zu Grunde liegenden Konzepte.

Inhalte: Geschichte héherer Programmiersprachen, Objektorientierte Programmierung (Smalltalk), Modulare Programmierung
(Modula/Java 8, Ubersetzerbau, Logische Programmierung (Prolog), Funktionale Programmierung (Lisp), Skriptsprachen (Python),
Laufzeitumgebungen, virtuelle Maschinen
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Eigene Programmiersprache Teil 2

Prolog Praktikurn eliza.pl family0.pl
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Why Study (Programming-) Languages

m The purpose of language is simply that it must
convey meaning. (Confucius, 551-479 BC)

m The limits of my language means the
limits of my world. (Wittgenstein,1889-1951)
Practial application: Orwells Newspeek

m Programming languages are important for students
in all disciplines of computer science because
they are the primary tools of the central
activity of computer science : programming.

School of Engineering © K. Rege, ZHAW
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Why Study Programming Languages? ath sonoalar

m To improve your ability to develop effective algorithms and to improve your use
of your existing programming language.
e.g. O-0 features, recursion

e.g. call by value, call by reference

B To increase your vocabulary of useful programming constructs.
m To allow a better choice of programming languages.

m To make it easier to learn a new language.

m very rarely to make it easier to design a new language.

Marjan Sirjani
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The Scientific behind Computation
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Algorithm

m Abu Ja'far Muhammad ibn Musa al-Khorezmi

Lived in Baghdad around 780 — 850 AD

Chief mathematician in Khalif Al Mamun’s “House of Wisdom”

Adopted 1..9 from India and introduced 0

Author of “A Compact Introduction To Calculation Using Rules

Of Completion And Reduction”
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IXXCDLM
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Calculus of Thought Zh Sehaolor
aw

m Gottfried Wilhelm Leibniz
1646 - 1716
Inventor of calculus and binary system
“Calculus Ratiocinator”:
human reasoning can be reduced to a
formal symbolic language,
in which all arguments would be settled by
mechanical manipulation of logical concepts

Philosophical basis of Rationalism (vs Empiricism)

m Invented a mechanical calculator

School of Engineering © K. Rege, ZHAW 9 von 87



Formalisms for Computation

m Gottlob Frege (1848-1925)

Predicate logic
Formal basis for proof theory and automated theorem proving
Logic programming

Computation as logical deduction

m Alan Turing (1912-1954)
Turing machines
Imperative programming

Sequences of commands, explicit state transitions,
update via assignment

School of Engineering © K. Rege, ZHAW
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... Formalisms for Computation

m Alonzo Church (1903-1995)

= Lambda calculus

= Formal basis for all functional languages, semantics,
type theory

= Functional programming

= Pure expression evaluation, no assignment
operator i.e. states

m Stephen Kleene (1909-1994)

» Recursive functions & automata
= Regular expressions, finite-state machines

School of Engineering © K. Rege, ZHAW
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Engineering of Computation
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The Early Days Zh gohoolof
aw

m The very first programs were written in pure binary notation

Data and instructions had to be encoded in strings of 1s and 0s, octal or hex values

It was up to the programmer to keep track of where everything was stored in the machine's
memory.

Binary representation of Op Codes and addresses had to be determined by hand
e.g. before you could call a subroutine, you had to calculate its address.

m Technology that lifted these burdens from the programmer was assembly
language
Binary codes were replaced by symbols such as load, store, add, sub.

The symbols were translated into binary by a program called an assembler
also calculated addresses of subroutines and calls

This was the very first time in which the computer was used to
help with its own programming

http://www.cs.iastate.edu/~leavens/ComS541Fall97/hw-pages/history/

School of Engineering © K. Rege, ZHAW 13 von 87



Assembly Languages zh sonor
aw

m Invented by machine designers
the early 1950s

®m Mnemonics instead of
binary opcodes

push ebp

nov ebp, esp
sub esp, 4
push edi

m Reusable macros and subroutines

School of Engineering © K. Rege, ZHAW 14 von 87



Assembly Languages Drawback Zh —
aw

m Assembly language drawbacks
The programmer had to keep in mind all the minutiae in the instruction set of a specific computer.
Programs had to be rewritten for every hardware platform
C intention was to have a portable assembler
Mathematical expression such as x2+y2 might require dozens of assembly-language instructions.

m First higher-level language: FORTRAN
The programmer thinks in terms of variables and equations
Rather than registers and addresses.
e.g.in FORTRAN x2+y2 would be written simply as X**2+Y**2,

Expressions of this kind are translated into binary form by a program
called a compiler.

http://www.voidspace.org.uk/technology/programming history.shtml
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_ Structured Programming

Functional Programming

Deskriptive Maschinensprache | Lambda-Kalkdl Logikkalkile
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Declarative Programming
(Markups)

1976

1977 |

1978 Ada l [ T~sp
[REXX]

1979 ™7
Script Language

-

PostScript]
1985

1986 /

1982
1983
1984
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Popularity of Programming Languages 2024

Aug 2024 Aug 2023 Change Programming Language Ratings Change
1 1 #  Ppython 18.04% +4.71%
2 3 L @ C++ 10.04% -0.59%
3 2 A d G c 9.17% -2.24%
a 4 4, Java 9.16% -1.16%
5 = @ C# 6.39% -0.65%
6 6 JS  Javascript 3.91% +0.62%
7 8 N m SQL 2.21% +0.68%
8 7 v @ Visual Basic 2.18% -0.45%
9 12 e G0 GO 2.03% +0.87%
10 14 R~ @ Fortran 1.79% +0.75%
1 12 ~ 4 MATLAB 1.72% +0.67%
12 23 a @ Delphi/Object Pascal 1.63% +0.83%

School of Engineering
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Efficiency ath Bolat

m Efficiency of languages Speedup with parallel execution
Energy Time Matrix Multiply: relative speedup to a Python version (18 core Intel)

(c) Rust 1.03 (c) Rust 1.04 Version Speed-up Optimization
(c) C++ 1.34 (c) C4++ 1.56
(c) Ada 1.70 (c) Ada 1.85 Eythen :

1.98 (v) Java 1.89 c 47 Translate to static,
(c) Pascal 2.14 (c) Chapel 2.14 compiled language
() Chapel 2.18 () Go 2.83 C with@arallel loops > 366 Extract parallelism
(v) Lisp 2.27 (c) Pasecal 3.02
(c) Ocaml 2.40 (c) Ocaml 3.09 C with loops & 6,727 Organize parallelism
(e) Fortran 2.52 (v) C# 3.14 and memory access
(c) Swift 9 79 (v) L"“'P' :g'j? Intel AVX instructions 62,806 Use domain-specific
() Haskell 3.10 (c) Haskell 3.55 i
(v) C 3.14 () Swift 420 or Nvidia CUDA HW
(c) Go 3.23 (c) Fortran 4.20 from: Leiserson, et. al. “There's
() Dart 9.83 (v) F# 6.30 Plenty of Room at the Top.”
(v) F# 4.13 (i) JavaScript 6.52
(i) JavaScript 4.45 (i) Dart 6G.67
(v) Racket 7.91 (v) Racket 11.27
(i) TypeScript 21.50 (i) Hack 26.99
(i) Hack 24.02 (i) PHP 27.64
(i) PHP 20.30 (v) Erlang 36.71
(v) Erlang 42.23 (i) Jruby 43.44
(i) Lua 45.98 (i) TypeSeript | 46.20
(i) Jruby 46.54 (i) Ruby 59.34
(i) Ruby 69.91 (i) Perl 65.7

75.88 (i) Python 71.90
(i) Perl 70.58 (i) Lua 282.01

https://jaxenter.com/enerqy-efficient-programming-lanquages-137264.html
School of Engineering © K. Rege, ZHAW 23 von 87




Gender Preference

m For new development 2004

Male

Zh School of
aw Engineering

Language Overall
HTML 31.10%
SQL 20.10%
JavaScript 18.90%
Visual Basic 18.30%
Java 17.60%
C++ 16.00%
C 13.20%
Oracle 9.70%
ASP 9.40%
ActiveXx/COM = Basic 7.40%
Visual C++ 7.40%
Active X 6.20%
Perl 6.00%
OOP 5.00%
Cobol 4.20%

School of Engineering

30.30%
20.00%
19.30%
19.10%
18.30%
16.80%
13.80%
9.70%
9.70%
7.50%
8.00%
6.80%
6.60%
5.40%
4.40%

34.20%
20.30%
17.70%
15.20%
15.00%
12.90%
10.90%
9.40%
8.50%
7.10%
5.20%
3.70%
3.80%
3.50%
3.60%

-3.90%
-0.40%
1.60%
3.90%
3.30%
3.90%
2.90%
0.30%
1.20%
0.40%
2.80%
3.10%
2.70%
1.90%
0.80%

Female Difference Sionificance

MMM
MM
MMM

MMM

MM
M

COMMUNICATIONS OF THE ACM January 2004,/Vol. 47, No. |

© K. Rege, ZHAW
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FORTRAN
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FORTRAN (1954-57) - the Language azw scnootor

m Stands for FORmula TRANSIation

m Developed at IBM under the
guidance of John Backus
primarily for scientific programming

m Dramatically changed forever the
way computers used

[First High Level Language ]

John Backus

m Has continued to evolve

m Always among the most efficient compilers,
producing fast code

m Still in use e.g. for supercomputers

Destry Diefenbach
School of Engineering © K. Rege, ZHAW 29 von 87



FORTRAN - the Language zh...

aw Engineering

First high level programming language

FORTRAN originally began as a digital code interpreter for the IBM 701
with < 10 Kflops -> 100 uS pro Multiplikation

Originally only three control structures:

DO
IF
GOTO

FORTRAN has undergone many modifications. The newest version is
FORTRAN 2008

FORTRAN is still used for numeric computations and scientific computing

School of Engineering © K. Rege, ZHAW 30 von 87



FORTRAN - Development Cycle Zh Sohectof
aw

m The design of FORTRAN made it easier
to translate mathematical formulas into
code.

WO

m The point of FORTRAN was to make
programming easier.

m At the beginning of the 60ies over 50%
of the software was in FORTRAN

developers at work

School of Engineering © K. Rege, ZHAW 31 von 87



... FORTRAN - Development Cycle Zh Sohectof
aw

B FORTRAN is a complied language (like C) so the source code (what you write)
must be converted into machine code before it can be executed (e.g. Make
command) - allows for speed coding: i.e. less than 1h per cycle

FORTRAN FORTRAN Link with Executable
Program ' Compiler Libraries File

T

Executable
Source Code Object Code Libraries Code
Make Changes Test & Debug Execute
in Source Code Program Program

: : Georgialnstitulte
School of Engineering © K. Rege, ZHAW & @ﬁTe%hm@ﬂ@@y 32 von 87
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... FORTRAN - Development Cycle Zh sohentor
aw

m Punch Card s
m 1 Card =1 Line of Code

Write Program with Assemble Pass to Operator  Continuos Paper Analyze Output
Punch Card Terminal Programs & Data Punch Card Feeder Printer

no backspace! walk to RZ with Tractor Feed
https://youtu.be/YnnGbcM-H8c?2t=66 https://www.youtube.com/watch?v=KG2M4ttzBnY https://youtu.be/P91860AUFSM?t=68

School of Engineering © K. Rege, ZHAW 33 von 87



FORTRAN | Features zh —
aw

m Names could have up to six characters
m Post-test counting loop (DO)

m Formatted I/O

m User-defined subprograms

B Three-way selection statement (arithmetic IF)
IF ICOUNT-1) 100, 200, 300 negative, zero, positive

® No data typing statements
variables beginning with i, j, k, I, m or n were integers, all else floating point

m No separate compilation

m Programs larger than 400 lines rarely compiled correctly, mainly due to IBM
704’s poor hardware reliability

m Code was very fast - for that time

School of Engineering © K. Rege, ZHAW 34 von 87



FORTRAN Evolution zh —
aw

m Version history
FORTRAN 1957
FORTRAN Il
FORTRAN IV
FORTRAN 66 (released as ANSI standard in 1966)
FORTRAN 77 (ANSI standard in 1977)
FORTRAN 90 (ANSI standard in 1990)
FORTRAN 95 (ANSI standard version)
FORTRAN 2000 (ANSI standard version)

FORTRAN 2008 (ISO/IEC 1539-1:2010)
FORTRAN 2023 (Draft)

m Many different “dialects” produced by computer vendors

e.g. Digital VAX FORTRAN, now Intel FORTRAN
Fortran.NET by Fujitsu

School of Engineering © K. Rege, ZHAW 35 von 87



Statement Format

B FORTRAN before 90 requires a fixed format

z h School of

aw Engineering

@ . ®
@ [ @
o[ PROGRAM MAI N e
@||C COMMVENTS ARE ALLOAED |F A “C’ IS PLACED I N COLUW #1 @

DI MENSI ON X( 10) @
READ(5, *) (X(T),T=1,10) @
o ' TE(6, T000) X ®
G 100U I—LRlW—\I(J.)(, IHS 1S A VERY LUNG LINE O TEAT TO SHOW FHOW TO COUNITI NUE o
® THE STATENVENT TO A SECOND LNE—, 7, 10F12:4) ®
e ®

L;-bsel K 7-72 Statements 73-80

Optional

Line #s

Any character: continuation line

m Based on the punch card in use when FORTRAN was created

School of Engineering © K. Rege, ZHAW &G@%‘-’rgﬁgm@ﬁgg%ﬁ@ 36 von 87



Statement Format - Fixed Format Zh

aw Engineering

m “C”in column 1 indicates that line is a comment

m Columns 1-5 are reserved for statement labels

Statement labels are not required unless the statement is the target of a goto
Labels are numeric values only

m Column 6 is the continuation flag

Any character in column 6, other than space or “0”, indicates that this line is a continuation of the
previous line

There is usually a limit of 19 on the number of continuations

m Columns 7-72 are contain FORTRAN statements

B Columns 73-80 is for sequence information
Only of any use when using punch cards

: : Georgialnstitulte
School of Engineering © K. Rege, ZHAW & @ﬁTe%lhm@ﬂ@@y 37 von 87



Structure of a FORTRAN Program zh —
aw

@ FORTRAN is a compiled language

m Originally all memory is allocated statically at compile time

There is no standard method for dynamically allocating memory in a FORTRAN program before
FORTRAN 90

Memory is allocated in a predictable manner, a fact which can be used by the programmer to his
advantage or distress

FORTRAN does not guarantee values of un-initialized memory

m There is no official recursion support before FORTRAN 90
some vendor implementations had recursive capabilities

static memory allocation is at odds with the use of a stack which is needed for recursion

: : Georgialnstitulte
School of Engineering © K. Rege, ZHAW & @ﬁTe%lhm@ﬂ@@y 38 von 87



Structure of a FORTRAN Program Zh somoator
aw

B FORTRAN consists of program units
Program
Function
Subroutine
Block Data

®m The program unit contains the main code and the point where execution starts
Earlier versions of FORTRAN did not have a pr ogr amstatement
Since FORTRAN 77 a program begins with the pr ogr amstatement
The end statement terminates the program unit

®m A program unit may contain internal sub-programs

Internal functions
Internal subroutines

: : Georgialnstitulte
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Original Style of FORTRAN Program Sample azﬁ schoolof

m Allin capital letters

PROGRAM FUNDEM

C DECLARATI ONS FOR MAI N- PROGRAM
REAL A B, C
REAL AV, AVSQL, AVSQ
REAL AVRAGE

C ENTER THE DATA

DATA A B, C/ 5.0, 2.0, 3.0/

C CALCULATE THE AVERAGE OF THE NUMVBERS
AV = AVRAGE(A, B, O)
AVSQL = AVRAGE(A, B, C) **2
AVSQR = AVRAGE(A**2, B**2 Ct*2)

WRI TE (6, 100) ' THE AVERAGE OF THE SQUARES IS ', AVSQR
100 FORMAT (A32, F5.3)
END

REAL FUNCTI ON-AVRAGE( X, Y, Z)
REAL X, Y, Z, SUM

SUM= X + Y + Z

AVRAGE = SUM /3.0

RETURN

END

School of Engineering © K. Rege, ZHAW 40 von 87



Hello FORTRAN zh...
aw

B FORTRAN prints "Hello World" the default output device
m Fixed Format

WRI TE (6, 100) "Hello Wrld"
100 FORMAT (Al1,/7)
END

6 blanks
m Key Words are all capitalized by convention- in earlier times
m Statements start at position 6
m Since FORTRAN 90 free format allowed, ! indicate comment

m File Extension e.g. f95

I hello world program
program-hello

print *, "hello world!"
end program hell o

: : Georgialnstitulte
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Sample FORTRAN Programm Zh sshoolof
aw

m ! indicate comment

program Convert
I nmplicit none

Rttt Decl ar e
real *4 tenpC, tenpF, FACTOR

| nt eger*2 ZERO SHI FT

paranmeter (ZERO SH FT = 32, FACTOR = 5./9.)
i L | nput
print*, "Enter the tenperature in Fahrenheit

read*, tenpF

I Conput e
tenmpC = FACTOR * (tenpF - ZERO SHI FT)
i Qut put

print*, "The corresponding Centigrade tenperature is "
print*, tenpC, " degrees."”
end

School of Engineering © K. Rege, ZHAW 42 von 87



FORTRAN Variable zh -
aw

m Variables represent the memory of the program

m FORTRAN variables

FORTRAN IV numbers and letters, at least 6 significant characters
FORTRAN 77 numbers and letters and “_”, at least 16 characters

must start with a letter
m Up through 77, spaces in a FORTRAN program are ignored
IVALUE and | VAL UE are the same

using strange spacing, while acceptable, is bad practice

m FORTRAN variables are typed

m FORTRAN is case insensitive

ivar is the same as IVAR or IVAr

&Georgiaﬂm@@iﬁ@]ﬁ@
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FORTRAN Variable Typing azﬁ —

m All FORTRAN variables are typed nowadays

m INTEGER

ordinal number

m REAL/DOUBLE PRECISION

floating point values

m COMPLEX

complex values

m CHARACTER (77+)

strings

m LOGICAL

boolean values

: : Georgialnstitulte
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FORTRAN Variable Typing azﬁ —

®m A unique feature of FORTRAN — implicit typing
When a variable appears that has not been declared previously it is created (at compile time)
It is assigned a type based on the first character of the name
A-H,O-Z is type REAL
I-N is type INTEGER
A typo can cause the creation of a new variable — not an error
Old FORTRAN joke: Good is REAL if not defined otherwise

m Starting with 77 the i npl i ci t statement was added

Allowed changing the first letter assignments
Most 77 compilers include the i npl i ci t none statement that requires that all variables be
explicitly declared and typed — prevents the typo problem

m Today, it is regarded as good styletouse i npl i cit none

: : Georgialnstitulte
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FORTRAN Variable Typing azﬁ —

m Disable implicit typing altogether

program t est

lLnplicit none

® In the declarations section enter a type identifier followed by :: and a list of
variable names

I nteger :: a,value,istart

real :: initial value

m The first letter implicit typing is over-ridden when explicit typing is used

: : Georgialnstitulte
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FORTRAN Variable Typing azﬁ —

B The types presented earlier are the default types

m The range of both INTEGER and REAL had dependent on the computer

architecture
One computer may have a 32 bit integer while another may use 16 bit as its default

m A first attempt to deal with this lead to types such as
real *8, integer*4
The number after the * indicates the number of bytes used
Most computers have 8 bit bytes
Not every architecture will have every combination
Not an actual problem

But knowledge of the architecture of the system where a legacy FORTRAN program was developed

Is needed to be converted

B Today use of IEEE Types (without size)

real :: test

: : Georgialnstitulte
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FORTRAN Variable Typing azﬁ —

m The COMPLEX type
A built in data type

conplex :: a,b,c
~a =(3.0,-1.5
b =1(1, -1
S c=a*b
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FORTRAN Variable Typing azﬁ —

m The CHARACTER type was introduced in 77

m The * notation is used to specify the maximum number of characters the variable
can hold

character*20 :: stringl
stringl = 'abcd'
character*8 :: string2
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FORTRAN Variable Typing

m The LOGICAL type

| ogical :: error

_error = .false.

m May be result of a comparison

error = b**2 - 4*a*c .It. 0.0

: LOGICAL
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FORTRAN Arrays zh...
aw

m The array is the only data structure supported in 77 and before
®m An array is a linear allocation of memory
B An array can contain up to 7 dimensions

B Arrays are indexed startinga 1!

integer :: a

di mensi on a( 10)
integer :: b

di nension b(10,10)
'shortcut

real :: c(10, 10, 10)
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FORTRAN Subroutine zh —
aw

m The subroutine unit contains FORTRAN code that can be called from other
FORTRAN code
m A subroutine begins with a subr out | ne statement
Contains a name for the subroutine

A list of formal arguments

m Subroutines may be internal or external

An internal subroutine is included in the code of program unit and is only callable by the program
An external subroutine is created outside of a program unit and is callable from everywhere

m Has no return value
subroutine nmult(a, b, c)

real :: a,b,c
c=a*hb
return

end

call mult(5.0,x, val ue)
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FORTRAN Function zh —
aw

m The function unit contains FORTRAN code that can be called from other
FORTRAN code

m [t differs from a subroutine in that it returns a value

m A subroutine begins with a f unct i on statement

Contains a name for the function
A list of formal arguments
Specifies a return type

m Functions may be internal or external
An internal function is included in the code of program unit and is only callable by the program
An external function is created outside of a program unit and is callable from everywhere
real function nult(a, b)
real :: a,b
mubt—=a *b
return

end

value = mult(5.0,x)
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FORTRAN Variables and Subroutines ath sonoalar

m Allarguments to a FORTRAN subroutine are passed by reference
The subroutine receives the address of the variable
Any changes made by the subroutine are seen by the caller
Most other languages pass by value (the subroutine receives a copy)
Passing an array as an argument with just the name will pass the address of the first element

m On entry to a subroutine its local variables are not guaranteed to have any
known value

The save statement introduced in F 77 will ensure
that a variable will have on entry the value that it had on its last exit from the subroutine
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FORTRAN Block Data zh....
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m Normally variables in a FORTRAN program are local to the unit in which they are

declared

variables may be made known to subroutines using the arguments
variables may be created in a common block

m Common blocks are named shared memory areas
each program unit that declares the common block has access to it
each program unit that declares access to a common block defines it's own view
type of each variable in the block
size of each array in the block

progranm a
common / xmach/ a, b(250), c

common /fx/ nt,ntd,nfr(5), ec, el, gzero

progranm b

common-/xmach/ -a, b(50,5),c

name of common block
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FORTRAN Assignment Zh Sehoolof
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B The simple assignment statement stores the result of computations into a
variable

integer :: a
a=-a+1
Integer :: a

di mensi on a( 10, 10)
a(i,10) = 2.0 * pi * r**2
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FORTRAN Literals zh —
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m Literals are constants that appear in a FORTRAN program

® Number
integers - 1, -34
real - 1.0, 4.3E10, 5.1D-5
complex — (5.2,.8)

m Other

logical - .true., .false.
character — ‘title line’
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FORTRAN Literals zh —
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Integer :: a
a =34

real :: a(20)
a(l) = 31.4159e-1

iterm= -10.3

conplex :: z

z = (10, -10.5)

real _part = real (2)
ai mag_part = ai nag(z)

z = cnpl x(real _part * 2,ainmag_part)
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FORTRAN Expressions zh —
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m Expressions are the heart of FORTRAN (Formula Translator)

m There are two types of expressions

numeric
2 * 3.14159 * RADIUS**2
SIN(PI)

logical
LOGICAL IBOOL = .TRUE.
| .EQ. 10 .AND. ISTOP

Integer :: a

a = 34

real :: b(20)

b(1) = 31.4159e-1
conplex :: z

z = (10,-10.5)

real part = real(2z)
ai mag_part = ai mag(z)

z = cnpl x(real _part * 2,ainag_part)
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FORTRAN Parameter Statement zh —
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m The PARANETER statement is used to define constants
m Old syntax untyped

PARAVETER ( MAX=20)
® New syntax typed

I nt eger, paraneter :: nmax=20

m A parameter can be used wherever a variable is expected — but cannot be
overwritten

m Can be used in declarations

I-nteger, paraneter . nmax=20

I nteger a(mx)

: : Georgialnstitulte
School of Engineering © K. Rege, ZHAW & @ﬁTe%lhm@ﬂ@@y 60 von 87



FORTRAN Numerical Operators Zh Serpolar
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® The numerical operators
**(exponentiation)
* |
unary + -
binary + -
m Parentheses are used to alter the order of evaluation

m For binary operators, if the types do not match an implicit conversion is

performed to the most general type
integer -> real -> double precision
anything -> complex

B WARNING: division of an integer by an integer will produce a truncated result

5/2 => 2not25
float(5)/2 => 2.5

B The type-conversion intrinsic functions can be used to get the desired results
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Intrinsic (built-in) Functions zh...

aw Engineering

m FORTRAN includes an extensive set of built-in functions

m FORTRAN 66 has different names for these functions depending on the return

type and argument type
One letter prefix to define type of function I->int; D->double; C -> complex

B FORTRAN 77 introduced generic names for intrinsic functions

H e.g.
log(real or double) the generic version
dlog(double)
clog(complex)
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Type Conversion zh gt
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m The intrinsic functions have two forms
generic available only in 77 and above
argument specific

m Square root
SQRT(real or double) the generic version
DSQRT(double)

CSQRT(complex)

m Conversion to integer

INT(an th neric version .
(any) € generic versio m Conversion to real

IFIX(real) REAL(any) the generic version
IDINT(double) FLOAT(integer)
m Conversion to double REAL(ntegen)
SNGL(double)

DBLE(any) the generic version

m Conversion to complex
COMPLX(any) the generic version
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Math Functions (subset) ath Serpolar

m Sine and Cosine (radians)
SIN(real or double) the generic version
SIN(real)
DSIN(double)
CSIN(complex)

m Exponential
EXP(real or double) the generic version
EXP(real)
DEXP(double)
CEXP(complex)

m Natural logarithm
LOG(real or double) the generic version
DLOG(double)
CLOG(complex)
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FORTRAN Control Statements Zh Sohectof
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Branching (GOTO)
Comparison (IF)

Looping (DO)

Subroutine invocation (CALL)
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FORTRAN Branching azﬁ —

m FORTRAN includes a GOTO statement

® In modern languages this is considered very bad

its use was essential in FORTRAN 66 its predecessors
FORTRAN 77 introduced control statements that lessened the need for the GOTO

It (1 .eq. 0) go to 100
b =32.0
a=4.07%* ainit
got o 200
100 b = 52.0

200 c = b * a

: Georgialnstitulte
School of Engineering © K. Rege, ZHAW & @ﬁTe%hm@ﬂ@@y 66 von 87



FORTRAN Branching azﬁ —

m The FORTRAN GOTOalways branched to a FORTRAN statement that contained
a label in columns 1-5

m The labels varied from 1 to 99999

m Variations of the go to statement are

assigned goto
computed goto

m Spaces are ignored in FORTRAN code before 90
AOTO and GO TOare equivalent

m Excessive use of the goto (required in 66 and before) leads to difficult to
understand code
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FORTRAN Branching aza —

m Computed goto

m Operates much like a case or switch statement in other languages
1 2
goto (100, 200, 300, 400), i go

100 conti nue

got o 500

200 conti nue
got o500

500 conti nue
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FORTRAN Continue zh -
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m The CONTI NUE statement is a do-nothing statement and is frequently used as a
marker for labels

m It is used most frequently with DO loops
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FORTRAN IF azw Enamecring
m The | F statement is used to perform logical decisions

m The oldest form is the 3-way if (also called arithmetic if)

m The logical if appeared in FORTRAN IV/66

® The more modern if-then-else appeared in FORTRAN 77

Georgialhstitute
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FORTRAN 3-way If - Original Construct ath sonoalar

m The 3-way if statement tested a numerical value against zero

m It branched to one of three labels depending on the result; < 0, 0, >0

if (radius) 10, 20, 30 i f (abs(radius-eps)) 10,10, 20
10 _continue 10 conti-nue

goto 100 goto 100
20 conti nue 20 conti nue

got o100 goto 100
30 conti nue 100 conti nue

goto 100

100 conti nue
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FORTRAN Logical If zh —
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m The logical if statement performed a test using the logical operators

EQ., .NE., .LT., .LE., .GT., .GE.
AND., .OR., .NOT.

m If resultis true then a single statement is executed, e.g. goto

If (istart .eqg. 50) goto 100

100 conti nue

if (inode .eq. 2) a = sqrt(cvalue)

...Integer . a
| ogical :: quick
quick = .true.

i f (quick) step=0.5
if (.not. quick) step = 0.01
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FORTRAN Comparison

m Comparison Oparators

ot
.le.
. eq.
. ne.
. ge.
.gt.

| ess than

' ess than or equal to
equal to

not equal to

greater than or equal to

greater than

m Modern FORTRAN also <,>,>= etc. allowed
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FORTRAN Modern If zh —
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B FORTRAN 77 introduced the modern if statement (so-called structured
programming)

B The test operated the same as the logical if

m Greatly reduced the need for using the goto statement

® Includes
t hen clause
el se clause
el se if clause
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FORTRAN Modern If zh —
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m This form eliminates the goto statements from the previous example

l ogical :: quick
qui ck = .true.
i f (quick) then

step=0.5
el se

step = 0.01
endi f

i f (quick .and. (abs(xvalue — eps) .It. 0.005)) then

end if
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FORTRAN Looping azﬁ —

m The DOstatement is the mechanism for looping in FORTRAN
m The do loop is the only “official” looping mechanism in FORTRAN through 77

do 100 i =1, 10, 2
100 continhue

m Here |l is the control variable
it is normally an integer but can be real
1 is the start value
10 is the end value
2 is the increment value, may be omitted -> 1
everything to the 100 label is part of the loop
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FORTRAN Looping azﬁ —

m The labeled statement can be any statement not just continue

®m Loop may be nested
nested loops can share the same label — very bad form

do 100 i =1, 10, 2
do 100 j=1,5,1

100 a(i,j) = value
do 200 i =1, 10,2

do 100 j=1,5, 1

a(i,j) = value
100 continue

200 conti nue
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FORTRAN Looping azﬁ —

B FORTRAN 77 introduced a form of the do loop that does not require labels

do i =1, 100 do i =1, 100
do j=1,50
enddo a(|,1) :i*j
end do
enddo

m The indented spacing is not required
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Miscellaneous Statements Zh

aw Engineering

m RETURNwill cause a sub program to return to the caller at that point — the END
statement contains an implied RETURN
® A number on a RETURN statement indicates that an alternate return be taken

m STOP will cause a program to terminate immediately — a number may be
Included to indicate where the stop occurred, STOP 2

m PAUSE will cause the program to stop with a short message — the message is the
number on the statement, PAUSE 5
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FORTRAN I/O Statements

z h School of

aw Engineering

B FORTRAN contains an extensive input/output capability

B FORTRAN I/O is based on the concept of a unit number

5 oder * is generally input — stdin on Unix
6 oder * is usually output — stdout on Unix

m Files are can be created as needed

open (unit =4, file = "genetoriesl.dat', forn= fornmatted")

open (unit

: . Georgialhsiiute
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FORTRAN 1/O Statements zh —
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m There are two types of I/O in FORTRAN

formatted
unformatted or binary

m There are two modes of operation

sequential
random

m Formatted I/O uses a format statement to prepare the data for output or interpret
for input

m Unformatted I/O does not use a format statement

the form of the data is generally system dependent
usually faster and is generally used to store intermediate results
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FORTRAN 1/O Statements zh —
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m Unformatted output I/O does not use a format statement

“print *, a,b,c,d,e

wite (6,*) a,b,c,d, e

wite (*,*) a,b,c,d, e
m The input are

1read *, a,b,c,d, e

read (5,*) a,b,c,d, e
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FORTRAN 1/O Statements zh —
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m The FORMAT statement is the heart of the FORTRAN formatted I/O system

m The format statement instructs the computer on the details of both input and

output
size of the field to use for the value st il il e st o
number of decimal places printer:

.. . 0 linefeed, 1 new page
B The format is identified by a statement label

A format can be used any number of times i
The label number must not conflict with goto labels =,

wite(6,9000) a,b,c,d, e
9000 format(1x,4f8.5,2x,e14.6,//)

1 space 4 floats 8 wide

and 5 digits
- Margaret Hamilt,
: . Georgialnsfiurie
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FORTRAN Parallel Programming azw —

B FORTRAN has support for parallel programming via OMP
m Good performance because of the mostly static data of FORTRAN

m Still popular for supercomputers e.g. for weather prediction

program mai n
use onp_lib

doubl e precision :: a,h,pi,sumx, sum| ocal : .
- a new variable instance

h=10d0/ n for each thread

sum = 0. 0dO
F$onp paralttel——private(i; x, sumtocal) numthreads(2)
sum | ocal = 0.0dO
doi =1,n

X = h * (DBLE(i)-0.5d0)

sum | ocal = sum/l|ocal + f(x) sum up in a shared
end do variable (Mutex)

'Sonmp critical

sum = sum + sum | ocal
' $onp end critical

' $onp end parall el
pi—=-h* sum

end program main
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Summary azﬁ sl

m History and evolution of programming languages

B FORTRAN as the first but still used programming language
Efficiency was everything
Card oriented, with information in fixed columns
First language to catch on in a big way
Because it was first, FORTRAN has much room for improvement

———

® |

—
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Appendix Format Specifiers zh o
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m X format code
Syntax: nX
Specifies n spaces to be included at this point

m | format code
Syntax: Iw
Specifies format for an integer using a field width of w spaces. If integer value exceeds this space,
output will consist of ****
m [ format code
Syntax: Fw.d
Specifies format for a REAL number using a field width of w spaces and printing d digits to the right
of the decimal point.
m A format code
Syntax: A or Aw

Specifies format for a CHARACTER using a field width equal to the number of characters, or using
exactly w spaces (padded with blanks to the right if characters are less than w.
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... Format Specifiers Zh sohoolar
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m T format code

Syntax: Tn
Skip (tab) to column number n

m Literal format code

Syntax: ‘quoted_string’
Print the quoted string in the output (not used in input)

m L format code

Syntax: Lw
Print value of logical variable as T or F, right-justified in field of width, w.
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