
■ History of Programming Languages
■ The very first Language: FORTRAN

Introduction
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Organisation des Kurses

■ 2 Lektionen Vorlesung

■ 2 Lektionen Praktikum

■ Unterlagen unter
■ https://radar.zhaw.ch/~rege

■ und in MOODLE unter PSPP
■ https://moodle.zhaw.ch/

■ und in MS Teams

■ Leistungsnachweis
■ Praktika

■ Abgabe  20%
■ Semesterendprüfung

■ Voraussichtlich Moodle
■ Hilfsmittel:  Open Book

Handbuch Programmiersprachen
von Peter Henning
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Semesterplan
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Why Study (Programming-) Languages

■ The  purpose of language  is  simply  that  it  must

convey  meaning. (Confucius, 551-479 BC )

■ The limits of my language means the

limits of my world. (Wittgenstein,1889-1951)
Practial application: Orwells Newspeek

■ Programming  languages  are  important  for  students
in  all  disciplines  of  computer  science  because

they  are  the  primary  tools  of  the  central

activity  of   computer   science :  programming.
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Why Study Programming Languages?

■ To improve your ability to develop effective algorithms and to improve your use

of your existing programming language.
■ e.g. O-O features, recursion

■ e.g. call by value, call by reference

■ To increase your vocabulary of useful programming constructs.

■ To allow a better choice of programming languages.

■ To make it easier to learn a new language.

■ very rarely to make it easier to design a new language.

Marjan Sirjani
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The Scientific behind Computation



8 von 87School of Engineering          © K. Rege,  ZHAW 

Algorithm

■ Abu Ja’far Muhammad ibn Musa al-Khorezmi

■ Lived in Baghdad around 780 – 850 AD

■ Chief mathematician in Khalif Al Mamun’s “House of Wisdom”

■ Adopted 1..9 from India and introduced 0

■ Author of “A Compact Introduction To Calculation Using Rules

Of Completion And Reduction”

© Vitaly Shmatikov
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Calculus of Thought

■ Gottfried Wilhelm Leibniz
■ 1646 - 1716
■ Inventor of calculus and binary system

■ “Calculus Ratiocinator”:

■ human reasoning can be reduced to a
formal symbolic language,
in which all arguments would be settled by
mechanical manipulation of logical concepts

■ Philosophical basis of Rationalism (vs Empiricism)

■ Invented a mechanical calculator

© Vitaly Shmatikov
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Formalisms for Computation

■ Gottlöb Frege (1848-1925)
■ Predicate logic
■ Formal basis for proof theory and automated theorem proving
■ Logic programming

■ Computation as logical deduction

■ Alan Turing (1912-1954)
■ Turing machines
■ Imperative programming

■ Sequences of commands, explicit state transitions,
update via assignment

© Vitaly Shmatikov
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... Formalisms for Computation

■ Alonzo Church (1903-1995)
■ Lambda calculus
■ Formal basis for all functional languages, semantics,

 type theory
■ Functional programming

■ Pure expression evaluation, no assignment
operator i.e. states

■ Stephen Kleene (1909-1994)
■ Recursive functions & automata
■ Regular expressions, finite-state machines

© Vitaly Shmatikov
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Engineering of Computation
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The Early Days

■ The very first programs were written in pure binary notation
■ Data and instructions had to be encoded in strings of 1s and 0s, octal or hex values
■ It was up to the programmer to keep track of where everything was stored in the machine's

memory.
■ Binary representation of Op Codes and addresses had to be determined by hand
■ e.g. before you could call a subroutine, you had to calculate its address.

■ Technology that lifted these burdens from the programmer was assembly
language

■ Binary codes were replaced by symbols such as load, store, add, sub.
■ The symbols were translated into binary by a program called an assembler

■ also calculated addresses of subroutines and calls

This was the very first time in which the computer was used to

help with its own programming

http://www.cs.iastate.edu/~leavens/ComS541Fall97/hw-pages/history/
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Assembly Languages

■ Invented by machine designers
   the early 1950s

■ Mnemonics instead of
   binary opcodes

   push ebp

     mov ebp, esp

     sub esp, 4

     push edi

■ Reusable macros and subroutines
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Assembly Languages Drawback

■ Assembly language drawbacks
■ The programmer had to keep in mind all the minutiae in the instruction set of a specific computer.
■ Programs had to be rewritten for every hardware platform

■ C intention was to have a portable assembler
■ Mathematical expression such as x2+y2 might require dozens of assembly-language instructions.

■ First higher-level language: FORTRAN
■ The programmer thinks in terms of variables and equations

■ Rather than registers and addresses.
■ e.g.in FORTRAN x2+y2 would be written simply as  X**2+Y**2.

Expressions of this kind are translated into binary form by a program

called a compiler.

http://www.voidspace.org.uk/technology/programming_history.shtml
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High Level LanguagesHigh Level Languages

Logical ProgrammingLogical Programming

Functional ProgrammingFunctional Programming

Structured ProgrammingStructured Programming

Domain Specific
Languages

Domain Specific
Languages
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Object Oriented
Programming

Object Oriented
Programming

Dynamic Typing,
Metaprogramming

Dynamic Typing,
Metaprogramming

Declarative Programming
(Markups)

Declarative Programming
(Markups)

Modular
Programming

Modular
Programming

Mixed LanguagesMixed Languages

Parallel ProgrammingParallel Programming

Script LanguageScript Language
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Parallel Programming 2Parallel Programming 2

Modular
Programming 2

Modular
Programming 2

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
...
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Popularity of Programming Languages 2024

https://www.tiobe.com/tiobe-index/
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Efficiency

■ Efficiency of languages

https://jaxenter.com/energy-efficient-programming-languages-137264.html

Speedup with parallel execution

or Nvidia CUDA
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Gender Preference

■ For new development 2004

Language Overall Male Female Difference Significance
HTML 31.10% 30.30% 34.20% -3.90%    F
SQL 20.10% 20.00% 20.30% -0.40%
JavaScript 18.90% 19.30% 17.70% 1.60%
Visual Basic 18.30% 19.10% 15.20% 3.90%    MMM
Java 17.60% 18.30% 15.00% 3.30%    MM
C++ 16.00% 16.80% 12.90% 3.90%    MMM
C 13.20% 13.80% 10.90% 2.90%    M
Oracle 9.70% 9.70% 9.40% 0.30%
ASP 9.40% 9.70% 8.50% 1.20%
Basic 7.40% 7.50% 7.10% 0.40%
Visual C++ 7.40% 8.00% 5.20% 2.80%    MMM
Active X 6.20% 6.80% 3.70% 3.10%    MMMM
Perl 6.00% 6.60% 3.80% 2.70%    MMM
OOP 5.00% 5.40% 3.50% 1.90%    MM
Cobol 4.20% 4.40% 3.60% 0.80%    M

ActiveX/COM =ActiveX/COM =
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FORTRAN
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FORTRAN  (1954-57) - the Language

■ Stands for FORmula TRANslation

■ Developed at IBM under the

guidance of John Backus
primarily for scientific programming

■ Dramatically changed forever the
way computers  used

First High Level Language

■ Has continued to evolve

■ Always among the most efficient compilers,
producing fast code

■ Still in use e.g. for supercomputers

John Backus

Destry Diefenbach
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FORTRAN - the Language

■ First high level programming language

■ FORTRAN originally began as a digital code interpreter for the IBM 701
■ with  < 10 Kflops -> 100 uS pro Multiplikation

■ Originally only three control structures:
■ DO
■ IF
■ GOTO

■ FORTRAN has undergone many modifications. The newest version is

FORTRAN 2008

■ FORTRAN is still used for numeric computations and scientific computing
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FORTRAN - Development Cycle

■ The design of FORTRAN made it easier

to translate mathematical formulas into

code.

■ The point of FORTRAN was to make
programming easier.

■ At the beginning of the 60ies over 50%

of the software was in FORTRAN

developers at work
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... FORTRAN - Development Cycle

■ FORTRAN is a complied language (like C) so the source code (what you write)

must be converted into machine code before it can be executed (e.g. Make
command) - allows for speed coding: i.e. less than 1h per cycle

FORTRAN
Program

FORTRAN
Program

FORTRAN
Compiler

FORTRAN
Compiler

LibrariesLibraries

Link with
Libraries

Link with
Libraries Executable

File

Executable
File

Source Code Object Code
Executable

Code

Execute
Program

Execute
Program

Test & Debug
Program

Test & Debug
Program

Make Changes
in Source Code

Make Changes
in Source Code
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... FORTRAN - Development Cycle

■ Punch Card

■ 1 Card = 1 Line of Code

Write Program with
Punch Card Terminal

no backspace!

Assemble
Programs & Data

walk to RZ

Pass to Operator
Punch Card Feeder

Continuos Paper
Printer

with Tractor Feed

Analyze Output

Wait ~1h

https://youtu.be/P91860AuF5M?t=68

78. . .   77 79  . . .

https://youtu.be/YnnGbcM-H8c?t=66 https://www.youtube.com/watch?v=KG2M4ttzBnY
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FORTRAN I Features

■ Names could have up to six characters

■ Post-test counting loop (DO)

■ Formatted I/O

■ User-defined subprograms

■ Three-way selection statement (arithmetic IF)
■ IF (ICOUNT-1) 100, 200, 300

■ No data typing statements
■ variables beginning with i, j, k, l, m or n were integers, all else floating point

■ No separate compilation

■ Programs larger than 400 lines rarely compiled correctly, mainly due to IBM

704’s poor hardware reliability

■ Code was very fast - for that time

negative, zero, positivenegative, zero, positive
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FORTRAN Evolution

■ Version history
■ FORTRAN 1957

■ FORTRAN II

■ FORTRAN IV

■ FORTRAN 66 (released as ANSI standard in 1966)

■ FORTRAN 77 (ANSI standard in 1977)

■ FORTRAN 90 (ANSI standard in 1990)

■ FORTRAN 95 (ANSI standard version)

■ FORTRAN 2000 (ANSI standard version)

■ FORTRAN 2008 (ISO/IEC 1539-1:2010)

■ FORTRAN 2023 (Draft)

■ Many different “dialects” produced by computer vendors
■ e.g. Digital VAX FORTRAN, now Intel FORTRAN
■ Fortran.NET by Fujitsu
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Statement Format

■ FORTRAN before 90 requires a fixed format

■ Based on the punch card in use when FORTRAN was created

       PROGRAM MAIN

C      COMMENTS ARE ALLOWED IF A “C” IS PLACED IN COLUMN #1

       DIMENSION X(10)

       READ(5,*) (X(I),I=1,10)

       WRITE(6,1000) X

  1000 FORMAT(1X,’THIS IS A VERY LONG LINE OF TEXT TO SHOW HOW TO CONTINUE ’

      *  ‘THE STATEMENT TO A SECOND LINE’,/,10F12.4)

1-5
Label

6 7-72 Statements 73-80
Optional
Line #s

Any character: continuation line
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Statement Format - Fixed Format

■ “C” in column 1 indicates that line is a comment

■ Columns 1-5 are reserved for statement labels
■ Statement labels are not required unless the statement is the target of a goto
■ Labels are numeric values only

■ Column 6 is the continuation flag
■ Any character in column 6, other than space or “0”, indicates that this line is a continuation of the

previous line
■ There is usually a limit of 19 on the number of continuations

■ Columns 7-72 are contain FORTRAN statements

■ Columns 73-80 is for sequence information
■ Only of any use when using punch cards
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Structure of a FORTRAN Program

■ FORTRAN is a compiled language

■ Originally all memory is allocated statically at compile time

■ There is no standard method for dynamically allocating memory in a FORTRAN program before

FORTRAN 90

■ Memory is allocated in a predictable manner, a fact which can be used by the programmer to his

advantage or distress

■ FORTRAN does not guarantee values of un-initialized memory

■ There is no official recursion support before FORTRAN 90

■ some vendor implementations had recursive capabilities

■ static memory allocation is at odds with the use of a stack which is needed for recursion
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Structure of a FORTRAN Program

■ FORTRAN consists of program units
■ Program
■ Function
■ Subroutine
■ Block Data

■ The program unit contains the main code and the point where execution starts
■ Earlier versions of FORTRAN did not have a program statement
■ Since FORTRAN 77 a program begins with the program statement
■ The end statement terminates the program unit

■ A program unit may contain internal sub-programs
■ Internal functions
■ Internal subroutines
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Original Style of FORTRAN Program Sample

■ All in capital letters

      PROGRAM FUNDEM
C     DECLARATIONS FOR MAIN PROGRAM
      REAL A,B,C
      REAL AV, AVSQ1, AVSQ2
      REAL AVRAGE
C     ENTER THE DATA
      DATA A,B,C/5.0,2.0,3.0/

C     CALCULATE THE AVERAGE OF THE NUMBERS
      AV = AVRAGE(A,B,C)
      AVSQ1 = AVRAGE(A,B,C) **2
     AVSQ2 = AVRAGE(A**2,B**2,C**2)

      WRITE  (6,100) 'THE AVERAGE OF THE SQUARES IS: ', AVSQ2
100   FORMAT (A32, F5.3)
      END

      REAL FUNCTION AVRAGE(X,Y,Z)
      REAL X,Y,Z,SUM
      SUM = X + Y + Z
      AVRAGE = SUM /3.0
      RETURN
      END
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Hello FORTRAN

■ FORTRAN prints "Hello World" the default output device

■ Fixed Format

■ Key Words are all capitalized by convention- in earlier times

■ Statements start at position 6

■ Since FORTRAN 90 free format allowed, ! indicate comment

■ File Extension e.g. f95

! hello world program
program hello
print *, "hello world!"
end program hello

     WRITE (6,100) "Hello World"
100  FORMAT (A11,//)
     END

6 blanks6 blanks
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Sample FORTRAN Programm

■ ! indicate comment

  program Convert
  implicit none
  ! -----------------------------------------------Declare
  real*4 tempC, tempF, FACTOR
  integer*2 ZERO_SHIFT
  parameter (ZERO_SHIFT = 32, FACTOR = 5./9.)
  ! -----------------------------------------------Input
  print*, "Enter the temperature in Fahrenheit ..."
  read*, tempF
  ! -----------------------------------------------Compute
  tempC = FACTOR * (tempF - ZERO_SHIFT)
  ! -----------------------------------------------Output
  print*, "The corresponding Centigrade temperature is "
  print*, tempC, " degrees."
  end
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FORTRAN Variable

■ Variables represent the memory of the program

■ FORTRAN variables

■ FORTRAN IV numbers and letters, at least 6 significant characters

■ FORTRAN 77 numbers and letters and “_”, at least 16 characters

■ must start with a letter

■ Up through 77, spaces in a FORTRAN program are ignored

■ IVALUE  and  I VAL UE are the same

■ using strange spacing, while acceptable, is bad practice

■ FORTRAN variables are typed

■ FORTRAN is case insensitive

■ ivar is the same as IVAR or IvAr
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FORTRAN Variable Typing

■ All FORTRAN variables are typed nowadays

■ INTEGER
■ ordinal number

■ REAL/DOUBLE PRECISION
■ floating point values

■ COMPLEX
■ complex values

■ CHARACTER  (77+)
■ strings

■ LOGICAL
■ boolean values
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FORTRAN Variable Typing

■ A unique feature of FORTRAN – implicit typing
■ When a variable appears that has not been declared previously it is created (at compile time)
■ It is assigned a type based on the first character of the name

■ A-H,O-Z is type REAL
■ I-N is type INTEGER

■ A typo can cause the creation of a new variable – not an error
■ Old FORTRAN joke: Good is REAL if not defined otherwise

■ Starting with 77 the implicit statement was added
■ Allowed changing the first letter assignments
■ Most 77 compilers include the implicit none statement that requires that all variables be

explicitly declared and typed – prevents the typo problem

■ Today, it is regarded as good style to use implicit none
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FORTRAN Variable Typing

■ Disable implicit typing altogether

■ In the declarations section enter a type identifier followed by :: and a list of

variable names

■ The first letter implicit typing is over-ridden when explicit typing is used

program test

implicit none

integer :: a,value,istart

real :: initial_value
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FORTRAN Variable Typing

■ The types presented earlier are the default types

■ The range of both INTEGER and REAL had dependent on the computer

architecture
■ One computer may have a 32 bit integer while another may use 16 bit as its default

■ A first attempt to deal with this lead to types such as
■ real*8, integer*4

■ The number after the * indicates the number of bytes used

■ Most computers have 8 bit bytes

■ Not every architecture will have every combination

■ Not an actual problem

■ But knowledge of the architecture of the system where a legacy FORTRAN program was developed

is needed to be converted

■ Today use of IEEE Types (without size)
■ real :: test
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FORTRAN Variable Typing

■ The COMPLEX  type
■ A built in data type

 complex :: a,b,c
 a = (3.0,-1.5)
 b = (1, -1)
 c = a * b
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FORTRAN Variable Typing

■ The CHARACTER type was introduced in 77

■ The * notation is used to specify the maximum number of characters the variable

can hold

character*20 :: string1

string1 = 'abcd'

character*8 :: string2
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FORTRAN Variable Typing : LOGICAL

■ The LOGICAL  type

■ May be result of a comparison

 logical :: error

 error = .false.

 error =  b**2 - 4*a*c .lt. 0.0
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FORTRAN Arrays

■ The array is the only data structure supported in 77 and before

■ An array is a linear allocation of memory

■ An array can contain up to 7 dimensions

■ Arrays are indexed starting a 1 !

      integer :: a

      dimension a(10)

      integer :: b

      dimension b(10,10)

      !shortcut

      real :: c(10,10,10)
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FORTRAN Subroutine

■ The subroutine unit contains FORTRAN code that can be called from other
FORTRAN code

■ A subroutine begins with a subroutine statement
■ Contains a name for the subroutine

■ A list of formal arguments

■ Subroutines may be internal or external
■ An internal subroutine is included in the code of program unit and is only callable by the program

■ An external subroutine is created outside of a program unit and is callable from everywhere

■ Has no return value
       subroutine mult(a,b,c)

       real :: a,b,c

       c = a * b

       return

       end

      ...

      call mult(5.0,x,value)
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FORTRAN Function

■ The function unit contains FORTRAN code that can be called from other
FORTRAN code

■ It differs from a subroutine in that it returns a value
■ A subroutine begins with a function statement

■ Contains a name for the function
■ A list of formal arguments
■ Specifies a return type

■ Functions may be internal or external
■ An internal function is included in the code of program unit and is only callable by the program
■ An external function is created outside of a program unit and is callable from everywhere

       real function mult(a,b)

       real :: a,b

       mult = a * b

       return

       end

      ...

      value = mult(5.0,x)
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FORTRAN Variables and Subroutines

■ All arguments to a FORTRAN subroutine are passed by reference
■ The subroutine receives the address of the variable
■ Any changes made by the subroutine are seen by the caller
■ Most other languages pass by value (the subroutine receives a copy)
■ Passing an array as an argument with just the name will pass the address of the first element

■ On entry to a subroutine its local variables are not guaranteed to have any
known value

■ The save statement introduced in F 77 will ensure
 that a variable will have on entry the value that it had on its last exit from the subroutine



55 von 87School of Engineering          © K. Rege,  ZHAW 

FORTRAN Block Data

■ Normally variables in a FORTRAN program are local to the unit in which they are

declared
■ variables may be made known to subroutines using the arguments
■ variables may be created in a common block

■ Common blocks are named shared memory areas
■ each program unit that declares the common block has access to it
■ each program unit that declares access to a common block defines it’s own view

■ type of each variable in the block
■ size of each array in the block

programm a

common /xmach/ a,b(250),c

common /fx/ nt,ntd,nfr(5),ec,el,gzero

programm b

common /xmach/ a,b(50,5),c

name of common blockname of common block
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FORTRAN Assignment

■ The simple assignment statement stores the result of computations into a

variable

      integer :: a

      dimension a(10,10)

      a(i,10) = 2.0 * pi * r**2

      integer :: a

      a = a + 1



57 von 87School of Engineering          © K. Rege,  ZHAW 

FORTRAN Literals

■ Literals are constants that appear in a FORTRAN program

■ Number
■ integers - 1, -34
■ real - 1.0, 4.3E10, 5.1D-5
■ complex – (5.2,.8)

■ Other
■ logical - .true., .false.
■ character – ‘title line’
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FORTRAN Literals

      integer :: a

      a = 34

      real :: a(20)

      a(1) = 31.4159e-1

      iterm = -10.3

      complex :: z

      z = (10,-10.5)

      real_part = real(z)

      aimag_part = aimag(z)

      z = cmplx(real_part * 2,aimag_part)
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FORTRAN Expressions

■ Expressions are the heart of FORTRAN (Formula Translator)

■ There are two types of expressions
■ numeric

■  2 * 3.14159 * RADIUS**2
■ SIN(PI)

■ logical
■ LOGICAL IBOOL = .TRUE.
■ I .EQ. 10 .AND. ISTOP

      integer :: a

      a = 34

      real :: b(20)

      b(1) = 31.4159e-1

      complex :: z

      z = (10,-10.5)

      real_part = real(z)

      aimag_part = aimag(z)

      z = cmplx(real_part * 2,aimag_part)
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FORTRAN Parameter Statement

■ The PARAMETER statement is used to define constants

■ Old syntax untyped

■ New syntax typed

■ A parameter can be used wherever a variable is expected – but cannot be

overwritten

■ Can be used in declarations

      PARAMETER (MAX=20)      PARAMETER (MAX=20)

      integer, parameter :: max=20

      integer a(max)

      integer, parameter :: max=20
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FORTRAN Numerical Operators

■ The numerical operators
■ **(exponentiation)
■ * /
■ unary + -
■ binary + -

■ Parentheses are used to alter the order of evaluation

■ For binary operators, if the types do not match an implicit conversion is

performed to the most general type
■ integer -> real -> double precision
■ anything -> complex

■ WARNING:  division of an integer by an integer will produce a truncated result
■ 5 / 2 => 2 not 2.5
■ float(5)/2 => 2.5

■ The type-conversion intrinsic functions can be used to get the desired results
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Intrinsic (built-in) Functions

■ FORTRAN includes an extensive set of built-in functions

■ FORTRAN 66 has different names for these functions depending on the return

type and argument type
■ One letter prefix to define type of function I->int; D->double; C -> complex

■ FORTRAN 77 introduced generic names for intrinsic functions

■ e.g.
■ log(real or double) the generic version
■ dlog(double)
■ clog(complex)
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Type Conversion

■ The intrinsic functions have two forms
■ generic available only in 77 and above
■ argument specific

■ Square root
■ SQRT(real or double) the generic version
■ DSQRT(double)
■ CSQRT(complex)

■ Conversion to integer
■ INT(any) the generic version
■ IFIX(real)
■ IDINT(double)

■ Conversion to double
■ DBLE(any) the generic version

■ Conversion to complex
■ COMPLX(any) the generic version

■  Conversion to real
■  REAL(any) the generic version
■  FLOAT(integer)
■  REAL(integer)
■  SNGL(double)
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Math Functions (subset)

■ Sine and Cosine (radians)
■ SIN(real or double) the generic version
■ SIN(real)
■ DSIN(double)
■ CSIN(complex)

■ Exponential
■ EXP(real or double) the generic version
■ EXP(real)
■ DEXP(double)
■ CEXP(complex)

■ Natural logarithm
■ LOG(real or double) the generic version
■ DLOG(double)
■ CLOG(complex)
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FORTRAN Control Statements

■ Branching (GOTO)

■ Comparison (IF)

■ Looping (DO)

■ Subroutine invocation (CALL)
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FORTRAN Branching

■ FORTRAN includes a GOTO statement

■ In modern languages this is considered very bad
■ its use was essential in FORTRAN 66 its predecessors
■ FORTRAN 77 introduced control statements that lessened the need for the GOTO

      if (i .eq. 0) go to 100

      b = 32.0

      a = 4.0 * ainit

      goto 200

  100 b = 52.0

      ...

  200 c = b * a
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FORTRAN Branching

■ The FORTRAN GOTO always branched to a FORTRAN statement that contained

a label in columns 1-5

■ The labels varied from 1 to 99999

■ Variations of the go to statement are
■ assigned goto
■ computed goto

■ Spaces are ignored in FORTRAN code before 90
■ GOTO  and GO TO are equivalent

■ Excessive use of the goto (required in 66 and before) leads to difficult to

understand code
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FORTRAN Branching

■ Computed goto

■ Operates much like a case or switch statement in other languages

      goto (100,200,300,400),igo

      ...

  100 continue

      ...

      goto 500

  200 continue

      ...

      goto 500

      ...

  500 continue

11 22
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FORTRAN Continue

■ The CONTINUE statement is a do-nothing statement and is frequently used as a

marker for labels

■ It is used most frequently with DO loops
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FORTRAN IF

■ The IF statement is used to perform logical decisions

■ The oldest form is the 3-way if (also called arithmetic if)

■ The logical if appeared in FORTRAN IV/66

■ The more modern if-then-else appeared in FORTRAN 77
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FORTRAN 3-way If - Original Construct

■ The 3-way if statement tested a numerical value against zero

■ It branched to one of three labels depending on the result; < 0, 0, >0

      if (radius) 10,20,30

   10 continue

      ...

      goto 100

   20 continue

      ...

      goto 100

   30 continue

      ...

      goto 100

  100 continue

      if (abs(radius-eps)) 10,10,20

10    continue

      ...

      goto 100

20    continue

      ...

      goto 100

100   continue
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FORTRAN Logical If

■ The logical if statement performed a test using the logical operators
■ .EQ., .NE., .LT., .LE., .GT., .GE.
■ .AND., .OR., .NOT.

■ If result is true then a single statement is executed, e.g. goto

      if (istart .eq. 50) goto 100

      ...

  100 continue

      if (imode .eq. 2) a = sqrt(cvalue)

      ...integer :: a

      logical :: quick

      quick = .true.

      if (quick) step=0.5

      if (.not. quick) step = 0.01



73 von 87School of Engineering          © K. Rege,  ZHAW 

FORTRAN Comparison

■ Comparison Oparators

■ Modern FORTRAN also <,>,>= etc. allowed

.lt.   less than

.le.   less than or equal to

.eq.   equal to

.ne.   not equal to

.ge.   greater than or equal to

.gt.   greater than
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FORTRAN Modern If

■ FORTRAN 77 introduced the modern if statement (so-called structured

programming)

■ The test operated the same as the logical if

■ Greatly reduced the need for using the goto statement

■ Includes
■ then clause
■ else clause
■ else if clause
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FORTRAN Modern If

■ This form eliminates the goto statements from the previous example

      logical :: quick

      quick = .true.

      if (quick) then

        step=0.5

      else

        step = 0.01

      endif

      ...

      if (quick .and. (abs(xvalue – eps) .lt. 0.005)) then

      ...
      end if
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FORTRAN Looping

■ The DO statement is the mechanism for looping in FORTRAN
■ The do loop is the only “official” looping mechanism in FORTRAN through 77

■ Here I is the control variable
■ it is normally an integer but can be real
■ 1 is the start value
■ 10 is the end value
■ 2 is the increment value, may be omitted -> 1
■ everything to the 100 label is part of the loop

      do 100 i=1,10,2

      ...

  100 continue
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FORTRAN Looping

■ The labeled statement can be any statement not just continue

■ Loop may be nested
■ nested loops can share the same label – very bad form

      do 100 i=1,10,2

      do 100 j=1,5,1

      ...

  100 a(i,j) = value

      do 200 i=1,10,2

      do 100 j=1,5,1

      ...

      a(i,j) = value

  100 continue

  200 continue
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FORTRAN Looping

■ FORTRAN 77 introduced a form of the do loop that does not require labels

■ The indented spacing is not required

      do i=1,100

      ...

      enddo

      do i=1,100

        do j=1,50

          a(i,j) = i*j

        end do

      enddo
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Miscellaneous Statements

■ RETURN will cause a sub program to return to the caller at that point – the END

statement contains an implied RETURN

■ A number on a RETURN statement indicates that an alternate return be taken

■ STOP will cause a program to terminate immediately – a number may be

included to indicate where the stop occurred, STOP 2

■ PAUSE will cause the program to stop with a short message – the message is the

number on the statement, PAUSE 5
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FORTRAN I/O Statements

■ FORTRAN contains an extensive input/output capability

■ FORTRAN I/O is based on the concept of a unit number
■ 5 oder * is generally input – stdin on Unix
■ 6 oder * is usually output – stdout on Unix

■ Files are can be created as needed

open (unit = 4, file = 'genetories1.dat', form='formatted')

open (unit = 11, file="ustream.demo", status="new", access="stream")
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FORTRAN I/O Statements

■ There are two types of I/O in FORTRAN
■ formatted
■ unformatted or binary

■ There are two modes of operation
■ sequential
■ random

■ Formatted I/O uses a format statement to prepare the data for output or interpret

for input

■ Unformatted I/O does not use a format statement
■ the form of the data is generally system dependent
■ usually faster and is generally used to store intermediate results
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FORTRAN I/O Statements

■ Unformatted output I/O does not use a format statement

■ The input are

      print *, a,b,c,d,e

      write (6,*) a,b,c,d,e

      write (*,*) a,b,c,d,e

      read *, a,b,c,d,e

      read (5,*) a,b,c,d,e
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FORTRAN I/O Statements

■ The FORMAT statement is the heart of the FORTRAN formatted I/O system

■ The format statement instructs the computer on the details of both input and

output
■ size of the field to use for the value
■ number of decimal places

■ The format is identified by a statement label
■ A format can be used any number of times
■ The label number must not conflict with goto labels

      write(6,9000) a,b,c,d,e

 9000 format(1x,4f8.5,2x,e14.6,//)

first column might be directive for
printer:
0 linefeed, 1 new page

first column might be directive for
printer:
0 linefeed, 1 new page

1 space1 space 4 floats 8 wide
and 5 digits

4 floats 8 wide
and 5 digits

Margaret Hamilton,
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FORTRAN Parallel Programming

■ FORTRAN has support for parallel programming via OMP

■ Good performance because of the mostly static data of FORTRAN

■ Still popular for supercomputers e.g. for weather prediction

program main
use omp_lib
double precision :: a,h,pi,sum,x,sum_local
...
h = 1.0d0 / n
sum = 0.0d0
!$omp parallel private(i,x,sum_local) num_threads(2)
sum_local = 0.0d0
do i = 1,n
  x = h * (DBLE(i)-0.5d0)
  sum_local = sum_local + f(x)
end do
!$omp critical
sum = sum + sum_local
!$omp end critical
!$omp end parallel
pi = h * sum
...
end program main

a new variable instance
for each thread

a new variable instance
for each thread

sum up in a shared
variable (Mutex)

sum up in a shared
variable (Mutex)
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Summary

■ History and evolution of programming languages

■ FORTRAN as the first but still used programming language
■ Efficiency was everything
■ Card oriented, with information in fixed columns
■ First language to catch on in a big way
■ Because it was first, FORTRAN has much room for improvement
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Appendix Format Specifiers

■ X format code
■ Syntax:  nX

■ Specifies n spaces to be included at this point

■ I format code
■ Syntax: Iw

■ Specifies format for an integer using a field width of w spaces. If integer value exceeds this space,
output will consist of ****

■ F format code
■ Syntax: Fw.d

■ Specifies format for a REAL number using a field width of w spaces and printing d digits to the right
of the decimal point.

■ A format code
■ Syntax: A or Aw

■ Specifies format for a CHARACTER using a field width equal to the number of characters, or using
exactly w spaces (padded with blanks to the right if characters are less than w.
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 ... Format Specifiers

■ T format code
■ Syntax: Tn
■ Skip (tab) to column number n

■ Literal format code
■ Syntax: ‘quoted_string’
■ Print the quoted string in the output (not used in input)

■ L format code
■ Syntax: Lw
■ Print value of logical variable as T or F, right-justified in field of width, w.


